RK3588 技术分享 | 在Android系统中使用NPU实现Yolov5分类检测-迅为电子

随着人工智能和大数据时代的到来,传统嵌入式处理器中的CPU和GPU逐渐无法满足日益增长的深度学习需求。为了应对这一挑战,在一些高端处理器中,NPU(神经网络处理单元)也被集成到了处理器里。NPU的出现不仅减轻了CPU和GPU的负担,还让复杂的计算任务得以高效处理。在典型的工作流中,CPU会首先接收任务,并根据任务的性质将其分配给合适的处理单元,图像处理任务由GPU处理,而人工智能相关任务则交给NPU。

应用领域

图像识别: NPU能够迅速对图像进行分类、检测和分割等操作,大大提升了处理效率。
语音识别: NPU实现了实时语音转换和语音合成功能,为语音交互提供了更自然的体验。
自然语言处理: NPU帮助机器完成更高效的翻译、文本分类和情感分析,推动了自然语言处理技术的发展。

实例分享:Yolov5分类检测

在RK3588处理器上,不仅可以基于Linux系统使用NPU,也可以基于Android系统使用NPU,基于Linux使用NPU已经多次与大家分享过就不在赘述。

在 Android平台上,可以通过两种方式调用RKNN API:直接链接librknnrt.so或链接基于Android平台HIDL实现的librknn_api_android.so。对于需要通过CTS/VTS测试的设备,建议使用后者,而对于不需要测试的设备,直接链接librknnrt.so可以提供更好的性能。

在开发板网盘资料中提供了Yolov5分类检测的示例---rknn_yolov5_android_apk_demo(基于瑞芯微官方demo修改)

测试步骤

⑴ 硬件连接

使用USB-TypeC连接线连接到OTG端口,连接迅为的ov13850/ov5695摄像头,连接屏幕

⑵ 例程测试

启动 Android Studio,打开rknn_yolov5_android_apk_demo应用工程文件夹进行编译,编译成功后,选择iTOP-RK3588设备并运行应用程序

当APP运行时,您会在迅为iTOP-RK3588开发板外接的MIPI屏幕上看到应用界面。在1280*800的预览分辨率下,应用程序能够达到约15FPS的运行速度,表现令人满意。

相关推荐
STCNXPARM18 小时前
Android camera之硬件架构
android·硬件架构·camera
ZCXZ12385296a19 小时前
YOLOv26在水果图像识别与分类中的应用:苹果、猕猴桃、橙子和红毛丹的检测研究
yolo·分类·数据挖掘
2501_9445255420 小时前
Flutter for OpenHarmony 个人理财管理App实战 - 支出分析页面
android·开发语言·前端·javascript·flutter
szxinmai主板定制专家21 小时前
基于 PC 的控制技术+ethercat+linux实时系统,助力追踪标签规模化生产,支持国产化
arm开发·人工智能·嵌入式硬件·yolo·fpga开发
松☆21 小时前
Dart 核心语法精讲:从空安全到流程控制(3)
android·java·开发语言
Dingdangcat861 天前
【YOLOv8改进实战】使用Ghost模块优化P2结构提升涂胶缺陷检测精度_1
人工智能·yolo·目标跟踪
_李小白1 天前
【Android 美颜相机】第二十三天:GPUImageDarkenBlendFilter(变暗混合滤镜)
android·数码相机
小天源1 天前
银河麒麟 V10(x86_64)离线安装 MySQL 8.0
android·mysql·adb·麒麟v10
2501_915921431 天前
傻瓜式 HTTPS 抓包,简单抓取iOS设备数据
android·网络协议·ios·小程序·https·uni-app·iphone
csj501 天前
安卓基础之《(20)—高级控件(2)列表类视图》
android