machine learning - 2

泛化误差 也可以认为是预测时的误差。

训练误差 并不是越小越好,太小会过拟合。

获得测试集合的方法:

1):

2):例如:k-折交叉验证法, 就的每k个数据取一个座位测试集

3):就像在一个抽奖盒里面摸,训练集摸n次,测试集摸m次,但是每摸一次会把小球放回盒子里

查准率:猜"Yes"猜对的概率

差全率:猜对答案是"Yes"的概率

我们注意到(分为ABCD4个区):当A减小的时候,B会增大,是属于A+B = constant value

又有,当C减小的时候,实际上是胆怯了,不敢大胆猜"Yes"了,于是A↓,B↑,所以R↓,而A是有C带动的,减小幅度<C,于是P还是↑。所以当P增大时,P会减小。

P-R图中,面积越大,效果越好

所以:A>C and B >C.

A 和 B 的比较要看平衡点(P == R) ,平衡点越高越好 : 所以由BEP : A > B > C

不过两个端点 P = 1.0 R = 0. 我不敢苟同。

相关推荐
Gofarlic_oms16 分钟前
区块链存证节点搭建:金融行业审计证据链构建指南
运维·人工智能·金融·数据挖掘·区块链·需求分析·devops
AI科技星18 分钟前
张祥前统一场论:空间位移条数概念深度解析
数据结构·人工智能·经验分享·算法·计算机视觉
AI浩22 分钟前
深度任意全景:用于全景深度估计的基础模型
人工智能·深度学习·目标跟踪
趣知岛27 分钟前
AI工具实战测评技术
人工智能·ai工具·测评
SCBAiotAigc27 分钟前
MinerU离线推理
人工智能·python·mineru
木白vihon29 分钟前
解锁Sora 2(0.07/条)核心玩法:Cameo多角色+Remix二创全攻略,API接入指南同步奉上
人工智能
沛沛老爹31 分钟前
Web开发者玩转AI工作流:Dify工作流开发深度解析
人工智能·llm·多模态·rag·深度优化·web转型ai
愚公搬代码32 分钟前
【愚公系列】《扣子开发 AI Agent 智能体应用》020-扣子数据库实战(创建/使用扣子数据库)
数据库·人工智能
云雾J视界32 分钟前
年终复盘2.0:NLP自动萃取经验教训,构建可执行策略库
人工智能·docker·nlp·复盘·技术架构·工业级设计
Das133 分钟前
【计算机视觉】09_分割
人工智能·计算机视觉