machine learning - 2

泛化误差 也可以认为是预测时的误差。

训练误差 并不是越小越好,太小会过拟合。

获得测试集合的方法:

1):

2):例如:k-折交叉验证法, 就的每k个数据取一个座位测试集

3):就像在一个抽奖盒里面摸,训练集摸n次,测试集摸m次,但是每摸一次会把小球放回盒子里

查准率:猜"Yes"猜对的概率

差全率:猜对答案是"Yes"的概率

我们注意到(分为ABCD4个区):当A减小的时候,B会增大,是属于A+B = constant value

又有,当C减小的时候,实际上是胆怯了,不敢大胆猜"Yes"了,于是A↓,B↑,所以R↓,而A是有C带动的,减小幅度<C,于是P还是↑。所以当P增大时,P会减小。

P-R图中,面积越大,效果越好

所以:A>C and B >C.

A 和 B 的比较要看平衡点(P == R) ,平衡点越高越好 : 所以由BEP : A > B > C

不过两个端点 P = 1.0 R = 0. 我不敢苟同。

相关推荐
FserSuN4 分钟前
Prompt工程学习之思维树(TOT)
人工智能·学习·prompt
字节跳动_离青39 分钟前
智能的路径
人工智能
王上上1 小时前
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
论文阅读·人工智能·cnn
Channing Lewis1 小时前
如果科技足够发达,是否还需要维持自然系统(例如生物多样性)中那种‘冗余’和‘多样性’,还是可以只保留最优解?
大数据·人工智能·科技
禺垣1 小时前
区块链技术概述
大数据·人工智能·分布式·物联网·去中心化·区块链
IT科技那点事儿1 小时前
引领AI安全新时代 Accelerate 2025北亚巡展·北京站成功举办
人工智能·安全
新智元1 小时前
美 IT 业裁员狂飙 35%,「硅谷梦」彻底崩塌!打工人怒喷 PIP
人工智能·openai
新智元1 小时前
乔布斯挚友去世!胰腺癌再夺硅谷天才,曾写下苹果「创世代码」
人工智能·openai
春末的南方城市1 小时前
中山大学&美团&港科大提出首个音频驱动多人对话视频生成MultiTalk,输入一个音频和提示,即可生成对应唇部、音频交互视频。
人工智能·python·深度学习·计算机视觉·transformer
春末的南方城市1 小时前
Ctrl-Crash 助力交通安全:可控生成逼真车祸视频,防患于未然
人工智能·计算机视觉·自然语言处理·aigc·音视频