machine learning - 2

泛化误差 也可以认为是预测时的误差。

训练误差 并不是越小越好,太小会过拟合。

获得测试集合的方法:

1):

2):例如:k-折交叉验证法, 就的每k个数据取一个座位测试集

3):就像在一个抽奖盒里面摸,训练集摸n次,测试集摸m次,但是每摸一次会把小球放回盒子里

查准率:猜"Yes"猜对的概率

差全率:猜对答案是"Yes"的概率

我们注意到(分为ABCD4个区):当A减小的时候,B会增大,是属于A+B = constant value

又有,当C减小的时候,实际上是胆怯了,不敢大胆猜"Yes"了,于是A↓,B↑,所以R↓,而A是有C带动的,减小幅度<C,于是P还是↑。所以当P增大时,P会减小。

P-R图中,面积越大,效果越好

所以:A>C and B >C.

A 和 B 的比较要看平衡点(P == R) ,平衡点越高越好 : 所以由BEP : A > B > C

不过两个端点 P = 1.0 R = 0. 我不敢苟同。

相关推荐
33三 三like3 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a3 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者4 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗4 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_5 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信5 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235865 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs5 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习
董董灿是个攻城狮5 小时前
AI 视觉连载2:灰度图
人工智能