machine learning - 2

泛化误差 也可以认为是预测时的误差。

训练误差 并不是越小越好,太小会过拟合。

获得测试集合的方法:

1):

2):例如:k-折交叉验证法, 就的每k个数据取一个座位测试集

3):就像在一个抽奖盒里面摸,训练集摸n次,测试集摸m次,但是每摸一次会把小球放回盒子里

查准率:猜"Yes"猜对的概率

差全率:猜对答案是"Yes"的概率

我们注意到(分为ABCD4个区):当A减小的时候,B会增大,是属于A+B = constant value

又有,当C减小的时候,实际上是胆怯了,不敢大胆猜"Yes"了,于是A↓,B↑,所以R↓,而A是有C带动的,减小幅度<C,于是P还是↑。所以当P增大时,P会减小。

P-R图中,面积越大,效果越好

所以:A>C and B >C.

A 和 B 的比较要看平衡点(P == R) ,平衡点越高越好 : 所以由BEP : A > B > C

不过两个端点 P = 1.0 R = 0. 我不敢苟同。

相关推荐
9命怪猫2 分钟前
AI大模型-提示工程学习笔记13—自动提示工程师 (Automatic Prompt Engineer)
人工智能·ai·大模型·prompt
Daitu_Adam41 分钟前
Windows11安装GPU版本Pytorch2.6教程
人工智能·pytorch·python·深度学习
阿正的梦工坊1 小时前
Grouped-Query Attention(GQA)详解: Pytorch实现
人工智能·pytorch·python
Best_Me071 小时前
【CVPR2024-工业异常检测】PromptAD:与只有正常样本的少样本异常检测的学习提示
人工智能·学习·算法·计算机视觉
山海青风1 小时前
从零开始玩转TensorFlow:小明的机器学习故事 4
人工智能·机器学习·tensorflow
YoseZang1 小时前
【机器学习】信息熵 交叉熵和相对熵
人工智能·深度学习·机器学习
Ronin-Lotus2 小时前
图像处理篇---图像处理中常见参数
图像处理·人工智能·信噪比·分贝·峰值信噪比·动态范围
机器视觉知识推荐、就业指导2 小时前
【数字图像处理三】图像变换与频域处理
图像处理·人工智能·计算机视觉
东木月2 小时前
windows安装pytorch
人工智能·pytorch·windows
wheelmouse77882 小时前
AI IDE 使用体验及 AI 感受
ide·人工智能