【了解ADC差分非线性(DNL)错误】

了解可能影响系统响应的缺陷,即ADC的非线性,即微分非线性(DNL)和积分非线性(INL)规范。

本文引用地址:https://www.eepw.com.cn/article/202409/462774.htm

真实世界的模数转换器(ADC)的传递函数可能由于诸如偏移和增益误差的影响而偏离理想响应。另一个可能影响系统响应的缺陷是ADC的非线性。不同的规格通常用于表征ADC的线性。对于测量和控制应用,微分非线性(DNL)和积分非线性(INL)规范是有用的性能指标。然而,当处理通信系统时,杂散自由动态范围(SFDR)规范通常是评估ADC线性性能

的更好方法。

微分非线性(DNL)

深入来看,让我们来看图1中的蓝色曲线,它显示了3位单极ADC的理想传递函数。

显示3位单极ADC理想传递函数的示例。

1.png

•图1。显示3位单极ADC理想传递函数的示例。

理想的响应表现出均匀的梯段输入输出特性,这意味着每个转变都发生在前一个转变的1LSB(最低有效位)。实际上,台阶宽度可能与理想值(1LSB)不同。上面的紫色曲线显示了假设的ADC的响应,其中步骤不均匀。在这个例子中,代码010的宽度是1.25LSB,而下一个代码呈现更小的0.54LSB的宽度。DNL规范描述了ADC步距如何偏离理想值。

对于ADC,第k个代码的DNL由以下方程式定义:

2.png

其中W(k)和Wideal分别表示第k个码的宽度和理想步长。举个例子,对于上图中的代码1(或001),我们有:

3.png

这意味着代码1的宽度比理想值大0.125 LSB。代码3(或011)具有0.54 LSB的宽度,产生-0.46 LSB的负DNL。注意,非理想代码转换可能导致"代码缺失"

例如,上述ADC不产生任何输入值的代码5(101)。对于缺少的代码,我们可以假设步长为零,导致DNL为-1。最后,在我们的例子中,代码6(110)具有理想的宽度,即DNL(6)=0。当计算DNL值时,我们假设ADC的偏移和增益误差已经被校准掉。这意味着第一个和最后一个转变发生在理想值处,并且因此对于第一个和最后一个步骤不定义DNL误差。

使用ADS8860表示ADC数字降噪信息

我们可以将上述信息表示为针对代码值的DNL图。对于以上实例,我们得出以下图。

DNL与代码值的关系图。

4.png

•图2。DNL与代码值的关系图。

DNL通常也表示为所有代码中的最小值和最大值。我们假设的ADC的DNL介于-1 LSB和+1.1 LSB之间。

全文链接:https://www.eepw.com.cn/article/202409/462774.htm

相关推荐
BB_CC_DD5 分钟前
超简单搭建AI去水印和图像修复算法lama-cleaner(包含网页UI单张操作和代码批量运行)一
人工智能·深度学习
IALab-检测行业AI报告生成7 分钟前
快速了解IACheck AI技术原理:四大核心模块解析
人工智能
CNRio9 分钟前
空间智能:中国数字基建的新引擎与产业变革的深层逻辑
人工智能·科技
泰迪智能科技9 分钟前
案例分享|中山三院医学影像报告辅助生成案例分析
人工智能·深度学习·机器学习
viperrrrrrrrrr717 分钟前
Prompt Tuning
人工智能·深度学习·prompt
志凌海纳SmartX19 分钟前
AI知识科普丨什么是 MaaS?
人工智能
落798.20 分钟前
Bright Data AI Scraper Studio:用Prompt秒建企业级爬虫,让数据采集进入AI时代
人工智能·亮数据
AI_567821 分钟前
TensorFlow损失函数的“隐形坑”
大数据·人工智能
七宝大爷23 分钟前
CUDA与cuDNN:深度学习加速库
人工智能·深度学习·cuda·cudnn
2401_8414956426 分钟前
【自然语言处理】单字与双字字频统计算法设计
人工智能·python·算法·自然语言处理·单字·双字·字频统计