【了解ADC差分非线性(DNL)错误】

了解可能影响系统响应的缺陷,即ADC的非线性,即微分非线性(DNL)和积分非线性(INL)规范。

本文引用地址:https://www.eepw.com.cn/article/202409/462774.htm

真实世界的模数转换器(ADC)的传递函数可能由于诸如偏移和增益误差的影响而偏离理想响应。另一个可能影响系统响应的缺陷是ADC的非线性。不同的规格通常用于表征ADC的线性。对于测量和控制应用,微分非线性(DNL)和积分非线性(INL)规范是有用的性能指标。然而,当处理通信系统时,杂散自由动态范围(SFDR)规范通常是评估ADC线性性能

的更好方法。

微分非线性(DNL)

深入来看,让我们来看图1中的蓝色曲线,它显示了3位单极ADC的理想传递函数。

显示3位单极ADC理想传递函数的示例。

1.png

•图1。显示3位单极ADC理想传递函数的示例。

理想的响应表现出均匀的梯段输入输出特性,这意味着每个转变都发生在前一个转变的1LSB(最低有效位)。实际上,台阶宽度可能与理想值(1LSB)不同。上面的紫色曲线显示了假设的ADC的响应,其中步骤不均匀。在这个例子中,代码010的宽度是1.25LSB,而下一个代码呈现更小的0.54LSB的宽度。DNL规范描述了ADC步距如何偏离理想值。

对于ADC,第k个代码的DNL由以下方程式定义:

2.png

其中W(k)和Wideal分别表示第k个码的宽度和理想步长。举个例子,对于上图中的代码1(或001),我们有:

3.png

这意味着代码1的宽度比理想值大0.125 LSB。代码3(或011)具有0.54 LSB的宽度,产生-0.46 LSB的负DNL。注意,非理想代码转换可能导致"代码缺失"

例如,上述ADC不产生任何输入值的代码5(101)。对于缺少的代码,我们可以假设步长为零,导致DNL为-1。最后,在我们的例子中,代码6(110)具有理想的宽度,即DNL(6)=0。当计算DNL值时,我们假设ADC的偏移和增益误差已经被校准掉。这意味着第一个和最后一个转变发生在理想值处,并且因此对于第一个和最后一个步骤不定义DNL误差。

使用ADS8860表示ADC数字降噪信息

我们可以将上述信息表示为针对代码值的DNL图。对于以上实例,我们得出以下图。

DNL与代码值的关系图。

4.png

•图2。DNL与代码值的关系图。

DNL通常也表示为所有代码中的最小值和最大值。我们假设的ADC的DNL介于-1 LSB和+1.1 LSB之间。

全文链接:https://www.eepw.com.cn/article/202409/462774.htm

相关推荐
谷粒.1 小时前
Cypress vs Playwright vs Selenium:现代Web自动化测试框架深度评测
java·前端·网络·人工智能·python·selenium·测试工具
CareyWYR6 小时前
每周AI论文速递(251201-251205)
人工智能
北京耐用通信7 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20097 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟8 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
央链知播8 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训8 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
YIN_尹9 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys55189 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化
小毅&Nora9 小时前
【人工智能】【深度学习】 ⑦ 从零开始AI学习路径:从Python到大模型的实战指南
人工智能·深度学习·学习