clip论文阅读(Learning Transferable Visual Models From Natural Language Supervision)

目录

  • 摘要
  • [训练pre-train model的过程](#训练pre-train model的过程)
  • [将pre-train model应用于下游任务](#将pre-train model应用于下游任务)
  • 应用(待更新)

论文/项目地址:https://github.com/OpenAI/CLIP

提供了clip的pre-trained model的权重,也可安装使用pre-trained model

摘要

使用标签标注的图像数据集具有规模不足、费时费力的缺点。所以作者提出了使用(text,image)的数据训练预训练模型(pre-train model) ,实验结果表明pre-train model在下游任务(图像分类、ORC等)中表现出色。例如:pre-train model在图像集ImageNet中的ACC高于Resnet(有监督训练的模型)在其上的ACC(准确率)

训练pre-train model的过程

从图中矩阵可看出 正样本为写对角线元素共N个,负样本为其他元素共 N 2 − N N^{2}-N N2−N个。

实现的核心代码如下所示:

1、将输入的图片使用resnet或其他模型提取特征向量I_f,将输入的文本使用transformer或其他模型提取特征向量T_f。

2、对前一步生成的特征向量分别加权重向量生成I_e和T_e。

3、两个向量相乘生成NxN的矩阵logits

4、最大化批处理中N对实数对图像和文本嵌入的余弦相似度,同时最小化 N 2 − N N^{2}−N N2−N对错误对嵌入的余弦相似度。

重点来了labels为[0,1,2...,n-1]的向量,表示正确类别的索引值。

5、总结:模型输入(text,image);输出------text和image的特征向量。最终的目的是训练image encoder和text encoder,其中训练过程中的loss为步骤4中的内容。

将pre-train model应用于下游任务

传统的视觉模型需要在新的数据集上进行微调,而clip可以直接实现zero-shot的图像分类,即不需要任何训练数据,就能在某个具体下游任务上实现分类。

操作步骤:

1、根据任务的分类标签构建每个类别的描述文本:A photo of {label},然后将这些文本送入Text Encoder得到对应的文本特征,如果类别数目为N,那么将得到N个文本特征;

2、将要预测的图像送入Image Encoder得到图像特征,然后与N个文本特征计算缩放的余弦相似度(和训练过程一致),选择相似度最大的文本对应的类别作为图像分类预测结果,进一步地,可以将这些相似度看成logits,送入softmax后可以到每个类别的预测概率。

应用(待更新)

styleclip

clipdraw

clips

参考:https://openatomworkshop.csdn.net/664ee0a5b12a9d168eb70230.html

相关推荐
0x2117 小时前
[论文阅读]Tensor Trust: Interpretable Prompt Injection Attacks from an Online Game
论文阅读·prompt
s1ckrain1 天前
【论文阅读】VARGPT-v1.1
论文阅读·多模态大模型·统一生成模型
Catching Star2 天前
【论文笔记】【强化微调】Vision-R1:首个针对多模态 LLM 制定的强化微调方法,以 7B 比肩 70B
论文阅读·强化微调
王上上2 天前
【论文阅读41】-LSTM-PINN预测人口
论文阅读·人工智能·lstm
s1ckrain2 天前
【论文阅读】DeepEyes: Incentivizing “Thinking with Images” via Reinforcement Learning
论文阅读·强化学习·多模态大模型·vlm
张较瘦_3 天前
[论文阅读] 人工智能 + 软件工程 | 需求获取访谈中LLM生成跟进问题研究:来龙去脉与创新突破
论文阅读·人工智能
北京地铁1号线3 天前
GPT-2论文阅读:Language Models are Unsupervised Multitask Learners
论文阅读·gpt·语言模型
张较瘦_3 天前
[论文阅读] 人工智能 + 软件工程 | 软件架构中自然问题主动辅助研究:从挑战到解决方案
论文阅读·人工智能·软件工程
有Li4 天前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
张较瘦_4 天前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习