多智能体强化学习示例

程序功能

这段代码实现了一个多智能体强化学习环境,其中两个智能体在5x5的网格上移动:

智能体目标:

Agent 1 从 (0, 0) 出发,目标是 (4, 4)。

Agent 2 从 (4, 4) 出发,目标是 (0, 0)。

动作空间:每个智能体有4个动作(上、下、左、右)。

奖励:到达目标位置获得 10 分,否则每步 -1 分。

终止条件:两个智能体都到达目标。

主程序中,两个智能体在随机动作下执行5个回合,并打印每一步的状态和奖励。

代码

python 复制代码
import numpy as np
import gym
from gym import spaces


# 定义多智能体环境
class MultiAgentEnv(gym.Env):
    def __init__(self):
        super(MultiAgentEnv, self).__init__()

        # 定义网格世界大小
        self.grid_size = 5

        # 智能体的初始位置
        self.agent1_pos = np.array([0, 0])  # Agent 1 起始点
        self.agent2_pos = np.array([4, 4])  # Agent 2 起始点

        # 智能体的目标位置
        self.goal1 = np.array([4, 4])  # Agent 1 的目标
        self.goal2 = np.array([0, 0])  # Agent 2 的目标

        # 定义动作空间和状态空间
        self.action_space = spaces.Discrete(4)  # 上、下、左、右 4 个动作
        self.observation_space = spaces.Box(low=0, high=self.grid_size - 1, shape=(2,), dtype=np.int32)

    def reset(self):
        # 重置智能体的位置
        self.agent1_pos = np.array([0, 0])
        self.agent2_pos = np.array([4, 4])
        return self._get_obs()

    def step(self, actions):
        # 传入两个智能体的动作
        action1, action2 = actions

        # 更新智能体1的位置
        self.agent1_pos = self._move(self.agent1_pos, action1)
        # 更新智能体2的位置
        self.agent2_pos = self._move(self.agent2_pos, action2)

        # 检查是否到达目标
        reward1 = 10 if np.array_equal(self.agent1_pos, self.goal1) else -1
        reward2 = 10 if np.array_equal(self.agent2_pos, self.goal2) else -1

        done1 = np.array_equal(self.agent1_pos, self.goal1)
        done2 = np.array_equal(self.agent2_pos, self.goal2)

        done = done1 and done2

        return self._get_obs(), [reward1, reward2], done, {}

    def _move(self, position, action):
        # 根据动作移动智能体
        if action == 0 and position[0] > 0:  # 向上
            position[0] -= 1
        elif action == 1 and position[0] < self.grid_size - 1:  # 向下
            position[0] += 1
        elif action == 2 and position[1] > 0:  # 向左
            position[1] -= 1
        elif action == 3 and position[1] < self.grid_size - 1:  # 向右
            position[1] += 1
        return position

    def _get_obs(self):
        # 返回两个智能体的当前状态
        return np.array([self.agent1_pos, self.agent2_pos])


# 运行多智能体环境
if __name__ == '__main__':
    env = MultiAgentEnv()

    for episode in range(5):
        print(f"Episode {episode + 1}:")
        obs = env.reset()
        done = False
        step = 0

        while not done:
            actions = [env.action_space.sample(), env.action_space.sample()]  # 随机动作
            obs, rewards, done, info = env.step(actions)
            step += 1
            print(f" Step {step}:")
            print(f"  Agent 1 Position: {obs[0]}, Reward: {rewards[0]}")
            print(f"  Agent 2 Position: {obs[1]}, Reward: {rewards[1]}")
        print("Episode finished!\n")
相关推荐
一个无名的炼丹师8 分钟前
GraphRAG深度解析:从原理到实战,重塑RAG检索增强生成的未来
人工智能·python·rag
用户83562907805141 分钟前
用Python轻松管理Word页脚:批量处理与多节文档技巧
后端·python
进击的松鼠1 小时前
LangChain 实战 | 快速搭建 Python 开发环境
python·langchain·llm
小北方城市网1 小时前
第1课:架构设计核心认知|从0建立架构思维(架构系列入门课)
大数据·网络·数据结构·python·架构·数据库架构
我的offer在哪里1 小时前
Hugging Face:让大模型触手可及的魔法工厂
人工智能·python·语言模型·开源·ai编程
汤姆yu2 小时前
基于python大数据的协同过滤音乐推荐系统
大数据·开发语言·python
爱学习的小道长2 小时前
Python Emoji库的使用教程
开发语言·python
Data_agent2 小时前
Cssbuy 模式淘宝 / 1688 代购系统南美市场搭建指南
大数据·python
xyt11722281772 小时前
宗地四至提取工具
python·arcgis
程序员三藏2 小时前
接口自动化测试之 pytest 接口关联框架封装
自动化测试·软件测试·python·测试工具·测试用例·pytest·接口测试