多智能体强化学习示例

程序功能

这段代码实现了一个多智能体强化学习环境,其中两个智能体在5x5的网格上移动:

智能体目标:

Agent 1 从 (0, 0) 出发,目标是 (4, 4)。

Agent 2 从 (4, 4) 出发,目标是 (0, 0)。

动作空间:每个智能体有4个动作(上、下、左、右)。

奖励:到达目标位置获得 10 分,否则每步 -1 分。

终止条件:两个智能体都到达目标。

主程序中,两个智能体在随机动作下执行5个回合,并打印每一步的状态和奖励。

代码

python 复制代码
import numpy as np
import gym
from gym import spaces


# 定义多智能体环境
class MultiAgentEnv(gym.Env):
    def __init__(self):
        super(MultiAgentEnv, self).__init__()

        # 定义网格世界大小
        self.grid_size = 5

        # 智能体的初始位置
        self.agent1_pos = np.array([0, 0])  # Agent 1 起始点
        self.agent2_pos = np.array([4, 4])  # Agent 2 起始点

        # 智能体的目标位置
        self.goal1 = np.array([4, 4])  # Agent 1 的目标
        self.goal2 = np.array([0, 0])  # Agent 2 的目标

        # 定义动作空间和状态空间
        self.action_space = spaces.Discrete(4)  # 上、下、左、右 4 个动作
        self.observation_space = spaces.Box(low=0, high=self.grid_size - 1, shape=(2,), dtype=np.int32)

    def reset(self):
        # 重置智能体的位置
        self.agent1_pos = np.array([0, 0])
        self.agent2_pos = np.array([4, 4])
        return self._get_obs()

    def step(self, actions):
        # 传入两个智能体的动作
        action1, action2 = actions

        # 更新智能体1的位置
        self.agent1_pos = self._move(self.agent1_pos, action1)
        # 更新智能体2的位置
        self.agent2_pos = self._move(self.agent2_pos, action2)

        # 检查是否到达目标
        reward1 = 10 if np.array_equal(self.agent1_pos, self.goal1) else -1
        reward2 = 10 if np.array_equal(self.agent2_pos, self.goal2) else -1

        done1 = np.array_equal(self.agent1_pos, self.goal1)
        done2 = np.array_equal(self.agent2_pos, self.goal2)

        done = done1 and done2

        return self._get_obs(), [reward1, reward2], done, {}

    def _move(self, position, action):
        # 根据动作移动智能体
        if action == 0 and position[0] > 0:  # 向上
            position[0] -= 1
        elif action == 1 and position[0] < self.grid_size - 1:  # 向下
            position[0] += 1
        elif action == 2 and position[1] > 0:  # 向左
            position[1] -= 1
        elif action == 3 and position[1] < self.grid_size - 1:  # 向右
            position[1] += 1
        return position

    def _get_obs(self):
        # 返回两个智能体的当前状态
        return np.array([self.agent1_pos, self.agent2_pos])


# 运行多智能体环境
if __name__ == '__main__':
    env = MultiAgentEnv()

    for episode in range(5):
        print(f"Episode {episode + 1}:")
        obs = env.reset()
        done = False
        step = 0

        while not done:
            actions = [env.action_space.sample(), env.action_space.sample()]  # 随机动作
            obs, rewards, done, info = env.step(actions)
            step += 1
            print(f" Step {step}:")
            print(f"  Agent 1 Position: {obs[0]}, Reward: {rewards[0]}")
            print(f"  Agent 2 Position: {obs[1]}, Reward: {rewards[1]}")
        print("Episode finished!\n")
相关推荐
杰瑞学AI25 分钟前
我的全栈学习之旅:FastAPI (持续更新!!!)
后端·python·websocket·学习·http·restful·fastapi
用户37215742613526 分钟前
Python 高效实现 Excel 与 CSV 互转:用自动化提升效率
python
CodeCraft Studio1 小时前
CAD文件处理控件Aspose.CAD教程:在 Python 中将 SVG 转换为 PDF
开发语言·python·pdf·svg·cad·aspose·aspose.cad
mortimer1 小时前
从预处理到合成:基于pySide6的视频翻译多线程流水线架构详解
python·github
喜欢吃豆2 小时前
从潜在空间到实际应用:Embedding模型架构与训练范式的综合解析
python·自然语言处理·架构·大模型·微调·embedding
AndrewHZ2 小时前
【图像处理基石】暗光增强算法入门:从原理到实战(Python+OpenCV)
图像处理·python·opencv·算法·计算机视觉·cv·暗光增强
纪伊路上盛名在3 小时前
python5.1 数据类dataclass
python·面向对象编程·oop
用户718841750783 小时前
深究 Python 中 int () 函数为何无法转换含小数点的字符串
python
on_pluto_3 小时前
LLaMA: Open and Efficient Foundation Language Models 论文阅读
python·机器学习
小二·3 小时前
mac下解压jar包
ide·python·pycharm