yolo视频检测时,检测框上显示中文名字

python 复制代码
from ultralytics import YOLO
import numpy as np
import cv2
from ultralytics import YOLO

# Load a pretrained YOLOv8n model
model = YOLO("yolov8n.pt")#我加载的是官方权重

# Define path to video file
video_path = r"D:\daye_input.mp4"
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
    print("Cannot open camera")
    exit()

fps = cap.get(cv2.CAP_PROP_FPS)#输入视频帧率
print(f"输入视频帧率为:Frames per second: {fps}")

# 保存视频的一些设置
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# width = int(1920)
# height = int(1080)
# fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # 保存视频的编码格式
# output_video_path = 'daye.mp4'
# fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # 保存视频的编码格式
# output_video_path = 'daye.mp4'

fourcc = cv2.VideoWriter_fourcc(*'XVID')  # 保存视频的编码格式
output_video_path = 'daye.avi'


out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))

from PIL import Image, ImageDraw, ImageFont

# 设置字体
font = ImageFont.truetype(r'C:\Windows\Fonts\SimHei.ttf', 60)  # 替换为你的字体路径
# 循环遍历视频帧
while cap.isOpened():

    # start_time = time.time() #记录开始时间

    # 从视频读取一帧
    success, frame = cap.read()

    if success:
        # 在帧上运行YOLOv8追踪,持续追踪帧间的物体
        #     results = model(frame,  conf=0.3,iou=0.5,imgsz=(640,640))
            results = model.track(frame, persist=True, conf=0.3, iou=0.5, tracker="ultralytics/cfg/trackers/bytetrack.yaml",
                              imgsz=(1920,1080))
            img_pil = Image.fromarray(frame)
            draw = ImageDraw.Draw(img_pil)  # 创建Draw对象

            if results[0].boxes and results[0].boxes.id is not None:
               boxes = results[0].boxes.xyxy.cpu()
               clss = results[0].boxes.cls
               track_ids = results[0].boxes.id.int().cpu().tolist()
               for id, cls, boxxyxy in zip( track_ids, clss, boxes ):
                   class_id = cls.item()
                   x1, y1, x2, y2 = boxxyxy
                   tracker_id = id
                   if class_id == 0.0:
                       # class_id = 'DaYe'

                       draw.text((int(x1), int(y1) - 50), str(tracker_id)+"号大爷", font=font, fill=(0, 0,255))# 在图片上绘制中文
                       # cv2.rectangle(img_pil, (int(x1), int(y1)), (int(x2), int(y2)), (0, 69, 255), 2)  # 橙红

                       draw.rectangle([(int(x1), int(y1)), (int(x2), int(y2))], outline="blue", width=4)  # 红色边框,宽度5

                   # else:
                   #     draw.text((int(x1), int(y1) - 50),  "不像大爷", font=font,
                   #               fill=(255, 0, 0))  # 在图片上绘制中文
                   #     # cv2.rectangle(img_pil, (int(x1), int(y1)), (int(x2), int(y2)), (0, 69, 255), 2)  # 橙红
                   #
                   #     draw.rectangle([(int(x1), int(y1)), (int(x2), int(y2))], outline="red", width=4)  # 红色边框,宽度5

            # img = cv2.cvtColor(np.array(img_pil), cv2.COLOR_BGR2RGB)
            img = np.array(img_pil)
            # cv2.imshow('frame_pil', img)
            # img = cv2.resize( img, (1920, 1080))
            out.write(img)

            cv2.imshow('frame_pil', img)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
            # cv2.waitKey(0)
            # cv2.destroyAllWindows()
    else:
        break
cap.release()
out.release()
cv2.destroyAllWindows()

检测效果见我b站视频【yolo检测框显示中文】 https://www.bilibili.com/video/BV1ih2wYWEcM/?share_source=copy_web\&vd_source=84543f4291e70cc3c31e5db4f6cabde8

相关推荐
一花·一叶6 小时前
基于昇腾310B4的YOLOv8目标检测推理
yolo·目标检测·边缘计算
昵称是6硬币6 小时前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
OICQQ676580087 小时前
创建一个基于YOLOv8+PyQt界面的驾驶员疲劳驾驶检测系统 实现对驾驶员疲劳状态的打哈欠检测,头部下垂 疲劳眼睛检测识别
yolo·pyqt·疲劳驾驶·检测识别·驾驶员检测·打哈欠检测·眼睛疲劳
king of code porter10 天前
目标检测之YOLOv5到YOLOv11——从架构设计和损失函数的变化分析
人工智能·yolo·目标检测
model200510 天前
yolov11转ncnn
yolo·ncnn
YueiL11 天前
ROS 2 中 Astra Pro 相机与 YOLOv5 检测功能编译启动全记录
yolo·ros2
来两个炸鸡腿11 天前
【Datawhale组队学习202506】YOLO-Master task03 IOU总结
python·学习·yolo
凌佚11 天前
rknn优化教程(三)
c++·yolo·目标检测
毕设做完了吗?11 天前
基于YOLO的智能车辆检测与记录系统
yolo
赵药师12 天前
YOLO官方自带的数据集Dotav1,直接训练
python·yolo·av1