AI开发-三方库-Hugging Face-Pipelines

1 需求

需求1:pipeline支持的任务类型

需求2:推理加速使用CPU还是GPU

需求3:基于pipeline的文本分类示例

需求4:pipeline实现原理



模型使用步骤(Raw text -》Input IDs -》Logits -》Predictions):

  • 第一步:数据预处理(Raw text -》Input IDs)
  • 第二步:模型调用(Input IDs -》Logits)
  • 第三步:结果后处理(Logits -》Predictions)

以下是对这个流程的解释:

一、Raw text -> Input IDs

  1. 原始文本处理

    • "Raw text" 即原始文本,可能是一段自然语言的语句、文章段落等。
    • 在自然语言处理任务中,首先需要将原始文本进行预处理,以便模型能够理解和处理。
  2. 分词与编码

    • 通常使用分词器(tokenizer)将原始文本分割成一个个的词或子词单元。例如,对于英文文本,可能会将单词拆分成词根、词缀等更小的单元;对于中文文本,可能会按照字、词等进行分割。
    • 然后,分词器会为每个分割后的单元分配一个唯一的整数标识符,即 "Input IDs"。这些整数标识符可以被模型识别和处理。
    • 例如,使用 Hugging Face 的 Transformers 库中的分词器,可以这样将原始文本转换为输入 ID 序列:

    text = "今天天气不错"

    第一步:数据预处理(Raw text -》Input IDs)

    from transformers import BertTokenizer

    tokenizer = BertTokenizer.from_pretrained('./model')
    inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True)
    print(inputs)

二、Input IDs -> Logits

  1. 模型处理输入

    • "Input IDs" 被输入到深度学习模型中,例如 Transformer 架构的语言模型。
    • 模型会对输入的 ID 序列进行一系列的计算和处理,包括嵌入(embedding)、多头注意力(multi-head attention)、前馈神经网络(feed-forward neural network)等操作。
  2. 生成对数概率

    • 经过模型的计算,最终会输出一个向量,称为 "Logits"。Logits 是模型对每个可能的输出类别的对数概率。
    • 例如,在文本分类任务中,如果有两个类别(正面和负面),那么 Logits 可能是一个长度为 2 的向量,分别表示输入文本属于正面类别和负面类别的对数概率。
    • 以下是一个简单的示例,使用预训练的模型生成 Logits:

    第二步:模型调用(Input IDs -》Logits)

    from transformers import BertForSequenceClassification

    model = BertForSequenceClassification.from_pretrained('./model')

    print(model.config)

    outputs = model(**inputs)
    logits = outputs.logits
    print(logits)

三、Logits -> Predictions

  1. 概率计算与预测

    • "Logits" 通常是未经过处理的对数概率,需要进一步转换为概率值。可以使用 softmax 函数将 Logits 转换为概率分布。
    • Softmax 函数会将每个对数概率转换为一个介于 0 和 1 之间的概率值,并且所有概率值之和为 1。
    • 然后,根据概率分布,可以选择概率最高的类别作为模型的预测结果。
    • 例如:

    第三步:结果后处理(Logits -》Predictions)

    import torch

    predictions = torch.nn.functional.softmax(logits, dim=-1)
    predictions_class = torch.argmax(predictions).item()
    print(predictions_class)
    print(model.config.id2label.get(predictions_class))

这个流程是自然语言处理中常见的文本分类任务的基本步骤,不同的任务和模型可能会有所不同,但总体上都遵循这个从原始文本到最终预测的过程。


2 接口

关键参数

  • task:指定任务类型
  • model:指定模型
  • tokenizer:指定分词器
  • device:指定使用GPU进行推理加速

常见调用方式

  • pipeline(task="text-classification")
  • pipeline(task="text-classification", model="./model")
  • pipeline(task="text-classification", model="./model", tokenizer="./model")
  • pipeline(task="text-classification", model="./model", tokenizer="./model", device=-1)

3.1 支持任务类型

from transformers.pipelines import SUPPORTED_TASKS

for k, v in SUPPORTED_TASKS.items():
    print(k)

3.2 推理加速使用CPU还是GPU

from transformers import pipeline

pipe = pipeline(task="text-classification", model="./model", tokenizer="./model")

print(pipe.model.device)

3.3 基于pipeline的文本分类示例

from transformers import pipeline

pipe = pipeline(task="text-classification", model="./model", tokenizer="./model", device=-1)
result = pipe("今天天气不错")
print(result)

3.4 pipeline实现原理

text = "今天天气不错"

# 第一步:数据预处理(Raw text -》Input IDs)
from transformers import BertTokenizer

tokenizer = BertTokenizer.from_pretrained('./model')
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True)
print(inputs)

# 第二步:模型调用(Input IDs -》Logits)
from transformers import BertForSequenceClassification

model = BertForSequenceClassification.from_pretrained('./model')
# print(model.config)
outputs = model(**inputs)
logits = outputs.logits
print(logits)

# 第三步:结果后处理(Logits -》Predictions)
import torch

predictions = torch.nn.functional.softmax(logits, dim=-1)
predictions_class = torch.argmax(predictions).item()
print(predictions_class)
print(model.config.id2label.get(predictions_class))

4 参考资料

https://huggingface.co/docs/transformers/main_classes/pipelines

https://hf-mirror.com/docs/transformers/main_classes/pipelines

https://blog.csdn.net/weixin_48007632/category_12725843.html

相关推荐
HPC_fac130520678169 分钟前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
小陈phd3 小时前
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
人工智能·opencv·计算机视觉
Guofu_Liao4 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
ZHOU_WUYI8 小时前
3.langchain中的prompt模板 (few shot examples in chat models)
人工智能·langchain·prompt
如若1238 小时前
主要用于图像的颜色提取、替换以及区域修改
人工智能·opencv·计算机视觉
老艾的AI世界8 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
DK221518 小时前
机器学习系列----关联分析
人工智能·机器学习
Robot2518 小时前
Figure 02迎重大升级!!人形机器人独角兽[Figure AI]商业化加速
人工智能·机器人·微信公众平台
浊酒南街9 小时前
Statsmodels之OLS回归
人工智能·数据挖掘·回归
畅联云平台10 小时前
美畅物联丨智能分析,安全管控:视频汇聚平台助力智慧工地建设
人工智能·物联网