偏差和均方根误差,偏差小,拟合的好,均方根误差小,波动程度小

以下是一个关于偏差(Bias)和均方根误差(RMSE)的简单例子,以帮助理解这两个概念:

假设情境

我们有一个简单的线性回归模型,用于预测某个地区某天的气温。真实的气温数据(真实值)为:20°C, 22°C, 23°C, 21°C, 25°C。而模型的预测值(预测气温)为:21°C, 20°C, 25°C, 20°C, 28°C。

偏差(Bias)计算

偏差是衡量模型预测值平均偏离真实值的程度。计算公式为所有预测值与真实值之差的平均值。

  1. 计算每个预测值与真实值之差:

    • 21°C - 20°C = 1°C
    • 20°C - 22°C = -2°C
    • 25°C - 23°C = 2°C
    • 20°C - 21°C = -1°C
    • 28°C - 25°C = 3°C
  2. 计算这些差值的平均值(偏差):

    • (1°C - 2°C + 2°C - 1°C + 3°C) / 5 = 0.6°C

在这个例子中,偏差为0.6°C,表示模型预测值整体上比真实值高0.6°C。

均方根误差(RMSE)计算

RMSE是衡量模型预测值与实际值之间整体差异程度的一种指标。它首先计算每个预测值与真实值之差的平方,然后求这些平方值的平均值,最后取平方根。

  1. 计算每个预测值与真实值之差的平方:

    • (21°C - 20°C)^2 = 1°C^2
    • (20°C - 22°C)^2 = 4°C^2
    • (25°C - 23°C)^2 = 4°C^2
    • (20°C - 21°C)^2 = 1°C^2
    • (28°C - 25°C)^2 = 9°C^2
  2. 计算这些平方值的平均值:

    • (1°C^2 + 4°C^2 + 4°C^2 + 1°C^2 + 9°C^2) / 5 = 3.8°C^2
  3. 取平方根得到RMSE:

    • √3.8°C^2 ≈ 1.95°C

在这个例子中,RMSE为1.95°C,表示模型预测值与实际值之间的平均差异为1.95°C。

总结

  • 偏差(Bias)衡量了模型预测值平均偏离真实值的程度,在这个例子中为0.6°C。
  • RMSE(均方根误差)衡量了模型预测值与实际值之间的整体差异程度,在这个例子中为1.95°C。

这两个指标共同提供了模型性能的全面评估。在实际应用中,我们通常会同时关注偏差和RMSE,以了解模型预测值的准确性和稳定性。

相关推荐
weixin_4541024611 分钟前
cordova android12+升级一些配置注意事项
android·前端·cordova
BillKu30 分钟前
node.js、npm相关知识
前端·npm·node.js
靠近彗星31 分钟前
基于 Vue + Django + MySQL 实现个人博客/CMS系统
前端·vue.js·python·mysql·django
予安灵37 分钟前
《白帽子讲 Web 安全》之服务端请求伪造(SSRF)深度剖析:从攻击到防御
前端·安全·web安全·网络安全·安全威胁分析·ssrf·服务端请求伪造
锋行天下1 小时前
WebSocket 即时通讯前后端设计和基于token的鉴权
前端·后端
舔甜歌姬的EGUMI LEGACY1 小时前
【算法day28】解数独——编写一个程序,通过填充空格来解决数独问题
算法
树上有只程序猿1 小时前
前端方面移动端适配方法,减少兼容性问题
前端
学吧别真挂了1 小时前
正则表达式从入门到飞升:覆盖90%前端场景的秘籍
前端·javascript·正则表达式
森叶1 小时前
利用 Chrome devTools Source Override 实现JS逆向破解案例
前端·javascript·chrome devtools
welkin1 小时前
KMP 个人理解
前端·算法