2026年AIR SCI1区TOP,基于三维 Rényi 熵模型的多特征融合与量子混合算法+阿尔茨海默病脑图像分割,深度解析+性能实测阿尔茨海默病(AD)的早期诊断高度依赖于脑病理图像的精确分割,但传统多阈值图像分割方法在噪声抑制和空间结构信息利用方面存在不足,难以应对 AD 图像中复杂纹理与高信息密度的问题。为此,本文提出了一种融合灰度强度、非局部均值和局部熵的三维 Rényi 熵模型,通过联合直方图同时表征灰度、空间与纹理特征,从而更全面地刻画图像不确定性。针对高维阈值优化难题,本文设计了一种量子混合电鳗觅食优化算法(QHEEFO),引入量子隧穿策略、量子控制因子和对数增强扰动机制,以提升全局搜索能力并避免早熟收敛。