20241022_01

from keras import Input

from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.layers import Dropout

from keras.models import Model

from keras.layers import concatenate

from tensorflow.keras.optimizers import Adam

from keras.layers import Conv2DTranspose

def Enhancednet(pretrained_weights=None):

input_shape = (None, None, 1)

inputs = Input(shape=input_shape, name='input_img')

conv1 = Conv2D(16, 5, activation='relu', padding='same')(inputs)

drop1 = Dropout(0.6)(conv1)

pool1 = MaxPooling2D(pool_size=(2, 2))(drop1)

conv2 = Conv2D(24, 5, activation='relu', padding='same')(pool1)

drop2 = Dropout(0.6)(conv2)

pool2 = MaxPooling2D(pool_size=(2, 2))(drop2)

conv3 = Conv2D(32, 5, activation='relu', padding='same')(pool2)

drop3 = Dropout(0.6)(conv3)

pool3 = MaxPooling2D(pool_size=(2, 2))(drop3)

conv4 = Conv2D(40, 5, activation='relu', padding='same')(pool3)

drop4 = Dropout(0.6)(conv4)

up5 = Conv2D(32, 3, activation='relu', padding='same')(

Conv2DTranspose(32, 5, activation='relu', padding="same", strides=2)(drop4))

merge5 = concatenate([drop3, up5], axis=3)

conv5 = Conv2D(32, 5, activation='relu', padding='same')(merge5)

drop5 = Dropout(0.6)(conv5)

up6 = Conv2D(24, 3, activation='relu', padding='same')(

Conv2DTranspose(24, 5, activation='relu', padding="same", strides=2)(drop5))

merge6 = concatenate([drop2, up6], axis=3)

conv6 = Conv2D(24, 5, activation='relu', padding='same')(merge6)

drop6 = Dropout(0.6)(conv6)

up7 = Conv2D(16, 3, activation='relu', padding='same')(

Conv2DTranspose(16, 5, activation='relu', padding="same", strides=2)(drop6))

merge7 = concatenate([drop1, up7], axis=3)

conv7 = Conv2D(16, 5, activation='relu', padding='same')(merge7)

drop7 = Dropout(0.6)(conv7)

conv8 = Conv2D(1, 1, activation='relu')(drop7)

model = Model(inputs=inputs, outputs=conv8)

opt = Adam()

model.compile(optimizer=opt, loss='mse', metrics=['accuracy'])

if pretrained_weights:

model.load_weights(pretrained_weights)

return model

相关推荐
1916zz34 分钟前
Extreme programing 方利喆 _ 江贤晟
python
长安牧笛35 分钟前
智能鞋柜—脚气终结者,内置温湿度传感器和紫外线灯,晚上回家,把鞋放进去,自动检测湿度,湿度超标就启动烘干+紫外线杀菌,第二天穿鞋干燥无异味。
python
weixin_457760001 小时前
PIL库将图片位深度是1、8、32统一转换为24的方法
python
Lucky高2 小时前
Pandas库入门
python·pandas
小鸡吃米…2 小时前
Python PyQt6教程三-菜单与工具栏
开发语言·python
Jack电子实验室3 小时前
【杭电HDU】校园网(DeepL/Srun)自动登录教程
python·嵌入式硬件·计算机网络·自动化
木头左3 小时前
二值化近似计算在量化交易策略中降低遗忘门运算复杂度
python
Jelena157795857923 小时前
Java爬虫淘宝拍立淘item_search_img拍接口示例代码
开发语言·python
郝学胜-神的一滴3 小时前
Python数据模型:深入解析及其对Python生态的影响
开发语言·网络·python·程序人生·性能优化
free-elcmacom3 小时前
机器学习进阶<8>PCA主成分分析
人工智能·python·机器学习·pca