20241022_01

from keras import Input

from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.layers import Dropout

from keras.models import Model

from keras.layers import concatenate

from tensorflow.keras.optimizers import Adam

from keras.layers import Conv2DTranspose

def Enhancednet(pretrained_weights=None):

input_shape = (None, None, 1)

inputs = Input(shape=input_shape, name='input_img')

conv1 = Conv2D(16, 5, activation='relu', padding='same')(inputs)

drop1 = Dropout(0.6)(conv1)

pool1 = MaxPooling2D(pool_size=(2, 2))(drop1)

conv2 = Conv2D(24, 5, activation='relu', padding='same')(pool1)

drop2 = Dropout(0.6)(conv2)

pool2 = MaxPooling2D(pool_size=(2, 2))(drop2)

conv3 = Conv2D(32, 5, activation='relu', padding='same')(pool2)

drop3 = Dropout(0.6)(conv3)

pool3 = MaxPooling2D(pool_size=(2, 2))(drop3)

conv4 = Conv2D(40, 5, activation='relu', padding='same')(pool3)

drop4 = Dropout(0.6)(conv4)

up5 = Conv2D(32, 3, activation='relu', padding='same')(

Conv2DTranspose(32, 5, activation='relu', padding="same", strides=2)(drop4))

merge5 = concatenate([drop3, up5], axis=3)

conv5 = Conv2D(32, 5, activation='relu', padding='same')(merge5)

drop5 = Dropout(0.6)(conv5)

up6 = Conv2D(24, 3, activation='relu', padding='same')(

Conv2DTranspose(24, 5, activation='relu', padding="same", strides=2)(drop5))

merge6 = concatenate([drop2, up6], axis=3)

conv6 = Conv2D(24, 5, activation='relu', padding='same')(merge6)

drop6 = Dropout(0.6)(conv6)

up7 = Conv2D(16, 3, activation='relu', padding='same')(

Conv2DTranspose(16, 5, activation='relu', padding="same", strides=2)(drop6))

merge7 = concatenate([drop1, up7], axis=3)

conv7 = Conv2D(16, 5, activation='relu', padding='same')(merge7)

drop7 = Dropout(0.6)(conv7)

conv8 = Conv2D(1, 1, activation='relu')(drop7)

model = Model(inputs=inputs, outputs=conv8)

opt = Adam()

model.compile(optimizer=opt, loss='mse', metrics=['accuracy'])

if pretrained_weights:

model.load_weights(pretrained_weights)

return model

相关推荐
爱笑的眼睛116 分钟前
超越 `cross_val_score`:深度解析Scikit-learn交叉验证API的架构、技巧与陷阱
java·人工智能·python·ai
smj2302_796826521 小时前
解决leetcode第3782题交替删除操作后最后剩下的整数
python·算法·leetcode
gCode Teacher 格码致知2 小时前
Python基础教学:Python 3中的字符串在解释运行时的内存编码表示-由Deepseek产生
python·内存编码
翔云 OCR API2 小时前
承兑汇票识别接口技术解析与应用实践
开发语言·人工智能·python·计算机视觉·ocr
likerhood2 小时前
3. pytorch中数据集加载和处理
人工智能·pytorch·python
Data_agent3 小时前
京东图片搜索商品API,json数据返回
数据库·python·json
深盾科技3 小时前
融合C++与Python:兼顾开发效率与运行性能
java·c++·python
yaoh.wang3 小时前
力扣(LeetCode) 104: 二叉树的最大深度 - 解法思路
python·程序人生·算法·leetcode·面试·职场和发展·跳槽
木头左3 小时前
机器学习辅助的LSTM交易策略特征工程与入参筛选技巧
python
Lenyiin3 小时前
《 Linux 修炼全景指南: 八 》别再碎片化学习!掌控 Linux 开发工具链:gcc、g++、GDB、Bash、Python 与工程化实践
linux·python·bash·gdb·gcc·g++·lenyiin