20241022_01

from keras import Input

from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.layers import Dropout

from keras.models import Model

from keras.layers import concatenate

from tensorflow.keras.optimizers import Adam

from keras.layers import Conv2DTranspose

def Enhancednet(pretrained_weights=None):

input_shape = (None, None, 1)

inputs = Input(shape=input_shape, name='input_img')

conv1 = Conv2D(16, 5, activation='relu', padding='same')(inputs)

drop1 = Dropout(0.6)(conv1)

pool1 = MaxPooling2D(pool_size=(2, 2))(drop1)

conv2 = Conv2D(24, 5, activation='relu', padding='same')(pool1)

drop2 = Dropout(0.6)(conv2)

pool2 = MaxPooling2D(pool_size=(2, 2))(drop2)

conv3 = Conv2D(32, 5, activation='relu', padding='same')(pool2)

drop3 = Dropout(0.6)(conv3)

pool3 = MaxPooling2D(pool_size=(2, 2))(drop3)

conv4 = Conv2D(40, 5, activation='relu', padding='same')(pool3)

drop4 = Dropout(0.6)(conv4)

up5 = Conv2D(32, 3, activation='relu', padding='same')(

Conv2DTranspose(32, 5, activation='relu', padding="same", strides=2)(drop4))

merge5 = concatenate([drop3, up5], axis=3)

conv5 = Conv2D(32, 5, activation='relu', padding='same')(merge5)

drop5 = Dropout(0.6)(conv5)

up6 = Conv2D(24, 3, activation='relu', padding='same')(

Conv2DTranspose(24, 5, activation='relu', padding="same", strides=2)(drop5))

merge6 = concatenate([drop2, up6], axis=3)

conv6 = Conv2D(24, 5, activation='relu', padding='same')(merge6)

drop6 = Dropout(0.6)(conv6)

up7 = Conv2D(16, 3, activation='relu', padding='same')(

Conv2DTranspose(16, 5, activation='relu', padding="same", strides=2)(drop6))

merge7 = concatenate([drop1, up7], axis=3)

conv7 = Conv2D(16, 5, activation='relu', padding='same')(merge7)

drop7 = Dropout(0.6)(conv7)

conv8 = Conv2D(1, 1, activation='relu')(drop7)

model = Model(inputs=inputs, outputs=conv8)

opt = Adam()

model.compile(optimizer=opt, loss='mse', metrics=['accuracy'])

if pretrained_weights:

model.load_weights(pretrained_weights)

return model

相关推荐
人工智能训练5 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
yaoming1685 小时前
python性能优化方案研究
python·性能优化
码云数智-大飞6 小时前
使用 Python 高效提取 PDF 中的表格数据并导出为 TXT 或 Excel
python
biuyyyxxx7 小时前
Python自动化办公学习笔记(一) 工具安装&教程
笔记·python·学习·自动化
极客数模7 小时前
【2026美赛赛题初步翻译F题】2026_ICM_Problem_F
大数据·c语言·python·数学建模·matlab
小鸡吃米…9 小时前
机器学习中的代价函数
人工智能·python·机器学习
Li emily10 小时前
如何通过外汇API平台快速实现实时数据接入?
开发语言·python·api·fastapi·美股
m0_5613596710 小时前
掌握Python魔法方法(Magic Methods)
jvm·数据库·python
Ulyanov10 小时前
顶层设计——单脉冲雷达仿真器的灵魂蓝图
python·算法·pyside·仿真系统·单脉冲
2401_8384725111 小时前
使用Python进行图像识别:CNN卷积神经网络实战
jvm·数据库·python