20241022_01

from keras import Input

from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.layers import Dropout

from keras.models import Model

from keras.layers import concatenate

from tensorflow.keras.optimizers import Adam

from keras.layers import Conv2DTranspose

def Enhancednet(pretrained_weights=None):

input_shape = (None, None, 1)

inputs = Input(shape=input_shape, name='input_img')

conv1 = Conv2D(16, 5, activation='relu', padding='same')(inputs)

drop1 = Dropout(0.6)(conv1)

pool1 = MaxPooling2D(pool_size=(2, 2))(drop1)

conv2 = Conv2D(24, 5, activation='relu', padding='same')(pool1)

drop2 = Dropout(0.6)(conv2)

pool2 = MaxPooling2D(pool_size=(2, 2))(drop2)

conv3 = Conv2D(32, 5, activation='relu', padding='same')(pool2)

drop3 = Dropout(0.6)(conv3)

pool3 = MaxPooling2D(pool_size=(2, 2))(drop3)

conv4 = Conv2D(40, 5, activation='relu', padding='same')(pool3)

drop4 = Dropout(0.6)(conv4)

up5 = Conv2D(32, 3, activation='relu', padding='same')(

Conv2DTranspose(32, 5, activation='relu', padding="same", strides=2)(drop4))

merge5 = concatenate([drop3, up5], axis=3)

conv5 = Conv2D(32, 5, activation='relu', padding='same')(merge5)

drop5 = Dropout(0.6)(conv5)

up6 = Conv2D(24, 3, activation='relu', padding='same')(

Conv2DTranspose(24, 5, activation='relu', padding="same", strides=2)(drop5))

merge6 = concatenate([drop2, up6], axis=3)

conv6 = Conv2D(24, 5, activation='relu', padding='same')(merge6)

drop6 = Dropout(0.6)(conv6)

up7 = Conv2D(16, 3, activation='relu', padding='same')(

Conv2DTranspose(16, 5, activation='relu', padding="same", strides=2)(drop6))

merge7 = concatenate([drop1, up7], axis=3)

conv7 = Conv2D(16, 5, activation='relu', padding='same')(merge7)

drop7 = Dropout(0.6)(conv7)

conv8 = Conv2D(1, 1, activation='relu')(drop7)

model = Model(inputs=inputs, outputs=conv8)

opt = Adam()

model.compile(optimizer=opt, loss='mse', metrics=['accuracy'])

if pretrained_weights:

model.load_weights(pretrained_weights)

return model

相关推荐
倔强青铜三11 分钟前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
用户2519162427114 小时前
Python之语言特点
python
刘立军4 小时前
使用pyHugeGraph查询HugeGraph图数据
python·graphql
数据智能老司机7 小时前
精通 Python 设计模式——创建型设计模式
python·设计模式·架构
数据智能老司机8 小时前
精通 Python 设计模式——SOLID 原则
python·设计模式·架构
c8i10 小时前
django中的FBV 和 CBV
python·django
c8i10 小时前
python中的闭包和装饰器
python
这里有鱼汤13 小时前
小白必看:QMT里的miniQMT入门教程
后端·python
TF男孩1 天前
ARQ:一款低成本的消息队列,实现每秒万级吞吐
后端·python·消息队列
该用户已不存在1 天前
Mojo vs Python vs Rust: 2025年搞AI,该学哪个?
后端·python·rust