20241022_01

from keras import Input

from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.layers import Dropout

from keras.models import Model

from keras.layers import concatenate

from tensorflow.keras.optimizers import Adam

from keras.layers import Conv2DTranspose

def Enhancednet(pretrained_weights=None):

input_shape = (None, None, 1)

inputs = Input(shape=input_shape, name='input_img')

conv1 = Conv2D(16, 5, activation='relu', padding='same')(inputs)

drop1 = Dropout(0.6)(conv1)

pool1 = MaxPooling2D(pool_size=(2, 2))(drop1)

conv2 = Conv2D(24, 5, activation='relu', padding='same')(pool1)

drop2 = Dropout(0.6)(conv2)

pool2 = MaxPooling2D(pool_size=(2, 2))(drop2)

conv3 = Conv2D(32, 5, activation='relu', padding='same')(pool2)

drop3 = Dropout(0.6)(conv3)

pool3 = MaxPooling2D(pool_size=(2, 2))(drop3)

conv4 = Conv2D(40, 5, activation='relu', padding='same')(pool3)

drop4 = Dropout(0.6)(conv4)

up5 = Conv2D(32, 3, activation='relu', padding='same')(

Conv2DTranspose(32, 5, activation='relu', padding="same", strides=2)(drop4))

merge5 = concatenate([drop3, up5], axis=3)

conv5 = Conv2D(32, 5, activation='relu', padding='same')(merge5)

drop5 = Dropout(0.6)(conv5)

up6 = Conv2D(24, 3, activation='relu', padding='same')(

Conv2DTranspose(24, 5, activation='relu', padding="same", strides=2)(drop5))

merge6 = concatenate([drop2, up6], axis=3)

conv6 = Conv2D(24, 5, activation='relu', padding='same')(merge6)

drop6 = Dropout(0.6)(conv6)

up7 = Conv2D(16, 3, activation='relu', padding='same')(

Conv2DTranspose(16, 5, activation='relu', padding="same", strides=2)(drop6))

merge7 = concatenate([drop1, up7], axis=3)

conv7 = Conv2D(16, 5, activation='relu', padding='same')(merge7)

drop7 = Dropout(0.6)(conv7)

conv8 = Conv2D(1, 1, activation='relu')(drop7)

model = Model(inputs=inputs, outputs=conv8)

opt = Adam()

model.compile(optimizer=opt, loss='mse', metrics=['accuracy'])

if pretrained_weights:

model.load_weights(pretrained_weights)

return model

相关推荐
DeepLink21 分钟前
Python 小练习系列:掌握偏函数 partial,用函数更丝滑!
python·trae
用户014331939061 小时前
Jumpserver双机集群搭建
python
fantasy_41 小时前
自动化框架及其设计搭建浅谈(三)--自动化测试框架设计最佳实践
python·自动化
XYN611 小时前
【嵌入式学习6】多任务版TCP服务器
服务器·网络·笔记·python·网络协议·学习·tcp/ip
这里有鱼汤1 小时前
Python 的 bisect 模块:这个冷门宝藏你用对了吗?
前端·后端·python
小小算法师1 小时前
python中的{}
python
这里有鱼汤1 小时前
Python 跨平台路径处理:最优解来了!
前端·后端·python
人类群星闪耀时2 小时前
用Python打造去中心化身份验证系统:迈向更安全的身份未来
python·安全·去中心化
钢铁男儿2 小时前
Python 字典和集合(字典推导)
开发语言·python
非ban必选2 小时前
spring-ai-openai调用Xinference1.4.1报错
java·python·spring