torch.chunk的用法示例——非常清晰

`torch.chunk` 是 PyTorch 中用于将一个张量沿指定维度分割成多个子张量的函数。下面是对其用法的详细解释和示例。

函数定义

```python

torch.chunk(input, chunks, dim=0)

```

  • **`input`**: 要分割的输入张量。

  • **`chunks`**: 要分割成的子张量的数量。

  • **`dim`**: 指定在哪个维度上进行分割,默认为 `0`(第一个维度,即行)。

示例

示例 1: 基本用法

复制代码
import torch

# 创建一个 4x4 的张量
tensor = torch.arange(16).reshape(4, 4)
print("Original Tensor:")
print(tensor)

# 将张量分割成 2 个部分,沿第 0 维(行)
chunks = torch.chunk(tensor, 2, dim=0)

print("\nChunks:")
for i, chunk in enumerate(chunks):
    print(f"Chunk {i}:")
    print(chunk)

**输出**:

```

Original Tensor:

tensor([[ 0, 1, 2, 3],

4, 5, 6, 7\], \[ 8, 9, 10, 11\], \[12, 13, 14, 15\]\]) Chunks: Chunk 0: tensor(\[\[0, 1, 2, 3\], \[4, 5, 6, 7\]\]) Chunk 1: tensor(\[\[ 8, 9, 10, 11\], \[12, 13, 14, 15\]\]) \`\`\`

示例 2: 不同维度分割

复制代码
# 将张量分割成 4 个部分,沿第 1 维(列)
chunks = torch.chunk(tensor, 4, dim=1)

print("\nChunks along dim=1:")
for i, chunk in enumerate(chunks):
    print(f"Chunk {i}:")
    print(chunk)

**输出**:

```

Chunks along dim=1:

Chunk 0:

tensor([[0],

4\], \[8\], \[12\]\]) Chunk 1: tensor(\[\[ 1\], \[ 5\], \[ 9\], \[13\]\]) Chunk 2: tensor(\[\[ 2\], \[ 6\], \[10\], \[14\]\]) Chunk 3: tensor(\[\[ 3\], \[ 7\], \[11\], \[15\]\]) \`\`\`

总结

  • `torch.chunk` 可以方便地将张量按指定维度分割成多个子张量,适用于需要将数据划分为多个部分的情况。

  • 在处理深度学习任务时,这种分割操作可以帮助实现特定的特征处理或聚合策略。

相关推荐
雨大王51220 小时前
怎么打造一个能自我进化的制造数字基座?
人工智能·汽车·制造
fengfuyao98520 小时前
基于MATLAB的表面织构油润滑轴承故障频率提取(改进VMD算法)
人工智能·算法·matlab
爱吃泡芙的小白白20 小时前
深入解析CNN中的Dropout层:从基础原理到最新变体实战
人工智能·神经网络·cnn·dropout·防止过拟合
Eloudy20 小时前
全文 -- TileLang: A Composable Tiled Programming Model for AISystems
人工智能·量子计算·arch
才盛智能科技20 小时前
K链通×才盛云:自助KTV品牌从0到1孵化超简单
大数据·人工智能·物联网·自助ktv系统·才盛云
广州赛远20 小时前
IRB2600-201.65特殊机器人防护服清洗工具详解与避坑指南
大数据·人工智能
Eloudy21 小时前
直接法 读书笔记 01 第1章 引言
人工智能·机器学习·hpc
xsc-xyc21 小时前
RuntimeError: Dataset ‘/data.yaml‘ error ❌ ‘_lz
人工智能·深度学习·yolo·计算机视觉·视觉检测
川西胖墩墩21 小时前
垂直模型价值:专业领域超越通用模型的竞争
大数据·人工智能
小润nature21 小时前
# Moltbot/OpenClaw 架构解读与二次开发完全指南
人工智能