torch.chunk的用法示例——非常清晰

`torch.chunk` 是 PyTorch 中用于将一个张量沿指定维度分割成多个子张量的函数。下面是对其用法的详细解释和示例。

函数定义

```python

torch.chunk(input, chunks, dim=0)

```

  • **`input`**: 要分割的输入张量。

  • **`chunks`**: 要分割成的子张量的数量。

  • **`dim`**: 指定在哪个维度上进行分割,默认为 `0`(第一个维度,即行)。

示例

示例 1: 基本用法

复制代码
import torch

# 创建一个 4x4 的张量
tensor = torch.arange(16).reshape(4, 4)
print("Original Tensor:")
print(tensor)

# 将张量分割成 2 个部分,沿第 0 维(行)
chunks = torch.chunk(tensor, 2, dim=0)

print("\nChunks:")
for i, chunk in enumerate(chunks):
    print(f"Chunk {i}:")
    print(chunk)

**输出**:

```

Original Tensor:

tensor([[ 0, 1, 2, 3],

4, 5, 6, 7\], \[ 8, 9, 10, 11\], \[12, 13, 14, 15\]\]) Chunks: Chunk 0: tensor(\[\[0, 1, 2, 3\], \[4, 5, 6, 7\]\]) Chunk 1: tensor(\[\[ 8, 9, 10, 11\], \[12, 13, 14, 15\]\]) \`\`\`

示例 2: 不同维度分割

复制代码
# 将张量分割成 4 个部分,沿第 1 维(列)
chunks = torch.chunk(tensor, 4, dim=1)

print("\nChunks along dim=1:")
for i, chunk in enumerate(chunks):
    print(f"Chunk {i}:")
    print(chunk)

**输出**:

```

Chunks along dim=1:

Chunk 0:

tensor([[0],

4\], \[8\], \[12\]\]) Chunk 1: tensor(\[\[ 1\], \[ 5\], \[ 9\], \[13\]\]) Chunk 2: tensor(\[\[ 2\], \[ 6\], \[10\], \[14\]\]) Chunk 3: tensor(\[\[ 3\], \[ 7\], \[11\], \[15\]\]) \`\`\`

总结

  • `torch.chunk` 可以方便地将张量按指定维度分割成多个子张量,适用于需要将数据划分为多个部分的情况。

  • 在处理深度学习任务时,这种分割操作可以帮助实现特定的特征处理或聚合策略。

相关推荐
卡尔AI工坊21 分钟前
Andrej Karpathy:过去一年大模型的六个关键转折
人工智能·经验分享·深度学习·机器学习·ai编程
:mnong21 分钟前
通过手写识别数字可视化学习卷积神经网络原理
人工智能·学习·cnn
俊哥V32 分钟前
[本周看点]AI算力扩张的“隐形瓶颈”——电网接入为何成为最大制约?
人工智能·ai
X54先生(人文科技)40 分钟前
碳硅协同对位法:从对抗博弈到共生协奏的元协议
人工智能·架构·零知识证明
阿里云大数据AI技术1 小时前
寻找 AI 全能王——阿里云 Data+AI 工程师全球大奖赛正式开启
人工智能·阿里云·云计算·天池大赛
Oflycomm1 小时前
CES 2026:高通扩展 IE-IoT 产品组合,边缘 AI 进入“平台化竞争”阶段
人工智能·物联网·高通·wifi7·ces2026·qogrisys
jay神1 小时前
指纹识别考勤打卡系统 - 完整源码项目
人工智能·深度学习·机器学习·计算机视觉·毕业设计
智慧医院运行管理解决方案专家1 小时前
当医院安全进入“自动驾驶”时代:AI机器人医院安全值守日记
人工智能·安全·自动驾驶
码农三叔1 小时前
(2-3)人形机器人的总体架构与系统工程:人形机器人的关键性能指标
人工智能·机器人·人形机器人
2501_941507941 小时前
【目标检测】YOLO13-C3k2-PFDConv实现长颈鹿与斑马精准检测,完整教程与代码解析_1
人工智能·目标检测·目标跟踪