torch.chunk的用法示例——非常清晰

`torch.chunk` 是 PyTorch 中用于将一个张量沿指定维度分割成多个子张量的函数。下面是对其用法的详细解释和示例。

函数定义

```python

torch.chunk(input, chunks, dim=0)

```

  • **`input`**: 要分割的输入张量。

  • **`chunks`**: 要分割成的子张量的数量。

  • **`dim`**: 指定在哪个维度上进行分割,默认为 `0`(第一个维度,即行)。

示例

示例 1: 基本用法

复制代码
import torch

# 创建一个 4x4 的张量
tensor = torch.arange(16).reshape(4, 4)
print("Original Tensor:")
print(tensor)

# 将张量分割成 2 个部分,沿第 0 维(行)
chunks = torch.chunk(tensor, 2, dim=0)

print("\nChunks:")
for i, chunk in enumerate(chunks):
    print(f"Chunk {i}:")
    print(chunk)

**输出**:

```

Original Tensor:

tensor([[ 0, 1, 2, 3],

4, 5, 6, 7\], \[ 8, 9, 10, 11\], \[12, 13, 14, 15\]\]) Chunks: Chunk 0: tensor(\[\[0, 1, 2, 3\], \[4, 5, 6, 7\]\]) Chunk 1: tensor(\[\[ 8, 9, 10, 11\], \[12, 13, 14, 15\]\]) \`\`\`

示例 2: 不同维度分割

复制代码
# 将张量分割成 4 个部分,沿第 1 维(列)
chunks = torch.chunk(tensor, 4, dim=1)

print("\nChunks along dim=1:")
for i, chunk in enumerate(chunks):
    print(f"Chunk {i}:")
    print(chunk)

**输出**:

```

Chunks along dim=1:

Chunk 0:

tensor([[0],

4\], \[8\], \[12\]\]) Chunk 1: tensor(\[\[ 1\], \[ 5\], \[ 9\], \[13\]\]) Chunk 2: tensor(\[\[ 2\], \[ 6\], \[10\], \[14\]\]) Chunk 3: tensor(\[\[ 3\], \[ 7\], \[11\], \[15\]\]) \`\`\`

总结

  • `torch.chunk` 可以方便地将张量按指定维度分割成多个子张量,适用于需要将数据划分为多个部分的情况。

  • 在处理深度学习任务时,这种分割操作可以帮助实现特定的特征处理或聚合策略。

相关推荐
yzx991013几秒前
[特殊字符] AI画廊:基于CNN的实时艺术风格迁移系统
人工智能·神经网络·cnn
Blossom.1185 分钟前
GPTQ量化实战:从零手写大模型权重量化与反量化引擎
人工智能·python·算法·chatgpt·ai作画·自动化·transformer
KakiNakajima15 分钟前
windows ollama models 路径不生效【kaki踩坑日记】
人工智能
编码小哥16 分钟前
OpenCV高级形态学变换:梯度、顶帽与黑帽
人工智能·opencv·计算机视觉
睡醒了叭19 分钟前
图像分割-传统算法-区域分割
图像处理·人工智能·算法·计算机视觉
Java后端的Ai之路24 分钟前
【神经网络基础】-激活函数详解
人工智能·深度学习·神经网络·激活函数
LiFileHub25 分钟前
神经网络全栈指南:从经典架构到NL范式落地(附12套工程化模板)
人工智能
AI_567831 分钟前
智慧交通:基于边缘计算的信号灯智能调度系统
人工智能·边缘计算
min18112345636 分钟前
因果推理在机器学习中的集成路径
人工智能
小鸡吃米…41 分钟前
机器学习——生态系统
人工智能·机器学习