torch.chunk的用法示例——非常清晰

`torch.chunk` 是 PyTorch 中用于将一个张量沿指定维度分割成多个子张量的函数。下面是对其用法的详细解释和示例。

函数定义

```python

torch.chunk(input, chunks, dim=0)

```

  • **`input`**: 要分割的输入张量。

  • **`chunks`**: 要分割成的子张量的数量。

  • **`dim`**: 指定在哪个维度上进行分割,默认为 `0`(第一个维度,即行)。

示例

示例 1: 基本用法

复制代码
import torch

# 创建一个 4x4 的张量
tensor = torch.arange(16).reshape(4, 4)
print("Original Tensor:")
print(tensor)

# 将张量分割成 2 个部分,沿第 0 维(行)
chunks = torch.chunk(tensor, 2, dim=0)

print("\nChunks:")
for i, chunk in enumerate(chunks):
    print(f"Chunk {i}:")
    print(chunk)

**输出**:

```

Original Tensor:

tensor([[ 0, 1, 2, 3],

4, 5, 6, 7\], \[ 8, 9, 10, 11\], \[12, 13, 14, 15\]\]) Chunks: Chunk 0: tensor(\[\[0, 1, 2, 3\], \[4, 5, 6, 7\]\]) Chunk 1: tensor(\[\[ 8, 9, 10, 11\], \[12, 13, 14, 15\]\]) \`\`\`

示例 2: 不同维度分割

复制代码
# 将张量分割成 4 个部分,沿第 1 维(列)
chunks = torch.chunk(tensor, 4, dim=1)

print("\nChunks along dim=1:")
for i, chunk in enumerate(chunks):
    print(f"Chunk {i}:")
    print(chunk)

**输出**:

```

Chunks along dim=1:

Chunk 0:

tensor([[0],

4\], \[8\], \[12\]\]) Chunk 1: tensor(\[\[ 1\], \[ 5\], \[ 9\], \[13\]\]) Chunk 2: tensor(\[\[ 2\], \[ 6\], \[10\], \[14\]\]) Chunk 3: tensor(\[\[ 3\], \[ 7\], \[11\], \[15\]\]) \`\`\`

总结

  • `torch.chunk` 可以方便地将张量按指定维度分割成多个子张量,适用于需要将数据划分为多个部分的情况。

  • 在处理深度学习任务时,这种分割操作可以帮助实现特定的特征处理或聚合策略。

相关推荐
墨染天姬1 小时前
【AI】数学基础之矩阵
人工智能·线性代数·矩阵
2401_841495643 小时前
【计算机视觉】基于复杂环境下的车牌识别
人工智能·python·算法·计算机视觉·去噪·车牌识别·字符识别
倔强青铜三3 小时前
苦练Python第66天:文件操作终极武器!shutil模块完全指南
人工智能·python·面试
倔强青铜三3 小时前
苦练Python第65天:CPU密集型任务救星!多进程multiprocessing模块实战解析,攻破GIL限制!
人工智能·python·面试
强哥之神4 小时前
浅谈目前主流的LLM软件技术栈:Kubernetes + Ray + PyTorch + vLLM 的协同架构
人工智能·语言模型·自然语言处理·transformer·openai·ray
zskj_qcxjqr4 小时前
七彩喜艾灸机器人:当千年中医智慧遇上现代科技
大数据·人工智能·科技·机器人
Zack_Liu4 小时前
深度学习基础模块
人工智能·深度学习
zy_destiny5 小时前
【工业场景】用YOLOv8实现抽烟识别
人工智能·python·算法·yolo·机器学习·计算机视觉·目标跟踪
狠活科技5 小时前
免登录!免安装ClI,Claude Code官方插件接入API使用教程
人工智能·vscode·ai编程
闲看云起5 小时前
Bert:从“读不懂上下文”的AI,到真正理解语言
论文阅读·人工智能·深度学习·语言模型·自然语言处理·bert