torch.chunk的用法示例——非常清晰

`torch.chunk` 是 PyTorch 中用于将一个张量沿指定维度分割成多个子张量的函数。下面是对其用法的详细解释和示例。

函数定义

```python

torch.chunk(input, chunks, dim=0)

```

  • **`input`**: 要分割的输入张量。

  • **`chunks`**: 要分割成的子张量的数量。

  • **`dim`**: 指定在哪个维度上进行分割,默认为 `0`(第一个维度,即行)。

示例

示例 1: 基本用法

复制代码
import torch

# 创建一个 4x4 的张量
tensor = torch.arange(16).reshape(4, 4)
print("Original Tensor:")
print(tensor)

# 将张量分割成 2 个部分,沿第 0 维(行)
chunks = torch.chunk(tensor, 2, dim=0)

print("\nChunks:")
for i, chunk in enumerate(chunks):
    print(f"Chunk {i}:")
    print(chunk)

**输出**:

```

Original Tensor:

tensor([[ 0, 1, 2, 3],

4, 5, 6, 7\], \[ 8, 9, 10, 11\], \[12, 13, 14, 15\]\]) Chunks: Chunk 0: tensor(\[\[0, 1, 2, 3\], \[4, 5, 6, 7\]\]) Chunk 1: tensor(\[\[ 8, 9, 10, 11\], \[12, 13, 14, 15\]\]) \`\`\`

示例 2: 不同维度分割

复制代码
# 将张量分割成 4 个部分,沿第 1 维(列)
chunks = torch.chunk(tensor, 4, dim=1)

print("\nChunks along dim=1:")
for i, chunk in enumerate(chunks):
    print(f"Chunk {i}:")
    print(chunk)

**输出**:

```

Chunks along dim=1:

Chunk 0:

tensor([[0],

4\], \[8\], \[12\]\]) Chunk 1: tensor(\[\[ 1\], \[ 5\], \[ 9\], \[13\]\]) Chunk 2: tensor(\[\[ 2\], \[ 6\], \[10\], \[14\]\]) Chunk 3: tensor(\[\[ 3\], \[ 7\], \[11\], \[15\]\]) \`\`\`

总结

  • `torch.chunk` 可以方便地将张量按指定维度分割成多个子张量,适用于需要将数据划分为多个部分的情况。

  • 在处理深度学习任务时,这种分割操作可以帮助实现特定的特征处理或聚合策略。

相关推荐
橙色小博39 分钟前
PyTorch中的各种损失函数的详细解析与通俗理解!
人工智能·pytorch·python·深度学习·神经网络·机器学习
小森77671 小时前
(三)机器学习---线性回归及其Python实现
人工智能·python·算法·机器学习·回归·线性回归
-XWB-2 小时前
【LLM】使用MySQL MCP Server让大模型轻松操作本地数据库
人工智能·python·自然语言处理
訾博ZiBo3 小时前
AI日报 - 2025年4月8日
人工智能
James. 常德 student3 小时前
深度学习之微调
人工智能·深度学习
liuyunshengsir3 小时前
chromadb 安装和使用
人工智能·大模型
FIT2CLOUD飞致云3 小时前
全面支持MCP协议,开启便捷连接之旅,MaxKB知识库问答系统v1.10.3 LTS版本发布
人工智能·开源
云水木石3 小时前
ChatGPT-4o 在汉字显示上进步巨大
人工智能·chatgpt
Mr_LeeCZ4 小时前
PyTorch 深度学习 || 7. Unet | Ch7.1 Unet 框架
人工智能·深度学习·机器学习
James. 常德 student4 小时前
多GPU训练
人工智能·pytorch·深度学习