基于OLAP湖仓一体架构,火山引擎ByteHouse助力企业降本提效

在数字化转型的浪潮中,企业对数据处理能力的要求日益提高。

过去,数据湖和数据仓库分别拥有两套独立的管理体系,这导致维护成本高昂,研发周期漫长。为了加强数据端到端的链路整合,构建一套低成本、高性能的数据湖仓一体分析能力成为越来越多企业的需求。

作为火山引擎推出的一款云原生数据仓库,ByteHouse基于ClickHouse技术路线优化和演进,已具备实时数据分析、海量数据离线分析能力,便捷的弹性扩缩容、极致分析性能以及丰富的企业级特性,在金融、游戏、泛互等领域加速企业数字化转型。为了进一步提升使用体验、降低运维成本,ByteHouse构建了高性能、功能全面的湖仓一体能力,支持对多种数据湖开放格式进行读写,并通过优化器和Schema动态感知增强性能,确保湖仓间数据高效流动。

据火山引擎ByteHouse产品负责人李群介绍:"ByteHouse湖仓一体能力具备快、通、全三大特点,在保障湖仓数据联邦的分析高性能的同时,实现湖仓双向读写,精简了整体架构,还基于Multi-Catalog进行多源数据管理,提供更丰富、更全面的一体化能力。"

首先,ByteHouse湖仓一体关键能力之一在于"快"。在当今复杂的商业环境下,企业每天需要面临大量决策,而高效的数据反馈可以提升企业决策效率和准确度。从Native Reader、IO 优化、多级Cache、物化视图、优化器五个方面,ByteHouse针对性能进行了大量优化。例如,在并发支持和复杂模型处理上,ByteHouse则通过自研优化器等手段优化了ClickHouse的不足,在经典的星星、雪花负载模型下已得到验证。从数据效果上看,ByteHouse在SSB Flat 100G 、TPC-DS 100G 测试中的表现,基本高于行业同类型产品。

其次是"通"。ByteHouse采用ZeroETL理念,实现了湖与仓之间的双向互通,支持读取和写入数据,简化数据架构。具体而言,ByteHouse湖-表格式在EMR上运行,支持对Hive、Hudi、Paimon、Iceberg等多种数据源的外表读操作。而湖-文件格式则支持在对象存储上进行CSV、JSON/JSONB、Parquet、ORC等多种格式的读写操作。此外,ByteHouse还提供了Spark、Flink等Connector,方便企业将ByteHouse与其他大数据处理框架进行集成,实现更加高效的数据处理和分析。

最后是"全"。基于Multi Catalog多源数据管理能力,ByteHouse具备全域数据一张图的能力。例如,从治理角度,展示全域血缘、全域治理数据;从管控角度,展示全域多租户管理、全域权限管控数据;从合规角度,展示全域合规性建设数据等,助力企业从全局视角更好洞察和分析高价值数据,提升数据资产化能力。

除了湖仓一体化,ByteHouse还从TP、AP一体化,仓、市一体化,AP、AI一体化方面,逐步实现 ZeroETL 轻量化数据架构。通过"四个一体化"策略,不仅让数仓更轻快,数据免搬迁,还能保障数据质量,实现智能运维。

目前,ByteHouse"四个一体化"策略已经在抖音集团内部BI平台落地和验证,在报表查询、管理驾驶舱、指标平台等业务场景中,将性能至少提升2倍,成本降低33%。

相关推荐
小陈phd4 分钟前
混合知识库搭建:本地Docker部署Neo4j图数据库与Milvus向量库
数据库·docker·neo4j
2401_8384725112 分钟前
使用Python进行图像识别:CNN卷积神经网络实战
jvm·数据库·python
知识即是力量ol31 分钟前
基于 Redis 实现白名单,黑名单机制详解及应用场景
数据库·redis·缓存
zhihuaba36 分钟前
使用PyTorch构建你的第一个神经网络
jvm·数据库·python
u01092727137 分钟前
Python Web爬虫入门:使用Requests和BeautifulSoup
jvm·数据库·python
小光学长37 分钟前
基于ssm的农业管理系统8y15w544(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
数据库
Mr_Xuhhh1 小时前
MySQL表的增删改查(CRUD)操作详解
数据库·windows
定偶1 小时前
MySQL安装
数据库·mysql
Zzzzmo_1 小时前
【MySQL】数据库约束 及 表的设计
数据库·mysql
码云数智-大飞2 小时前
Oracle RAS:AI时代守护企业数据安全的智能盾牌
数据库·人工智能·oracle