机器学习最简单的分类任务入门

以鸢尾花分类任务为例,几种不同的机器学习算法(决策树、支持向量机、K近邻)进行分类,并对比结果。

一、导入必要的库

python 复制代码
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

二、数据加载与预处理

python 复制代码
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

三、决策树分类器

python 复制代码
# 决策树分类器
dt_clf = DecisionTreeClassifier(random_state=42)
dt_clf.fit(X_train, y_train)
dt_pred = dt_clf.predict(X_test)
dt_accuracy = accuracy_score(y_test, dt_pred)
print("决策树准确率:", dt_accuracy)

四、支持向量机分类器

python 复制代码
# 支持向量机分类器
svm_clf = SVC(random_state=42)
svm_clf.fit(X_train, y_train)
svm_pred = svm_clf.predict(X_test)
svm_accuracy = accuracy_score(y_test, svm_pred)
print("支持向量机准确率:", svm_accuracy)

五、K近邻分类器

python 复制代码
# K近邻分类器,这里取k = 3
knn_clf = KNeighborsClassifier(n_neighbors=3)
knn_clf.fit(X_train, y_train)
knn_pred = knn_clf.predict(X_test)
knn_accuracy = accuracy_score(y_test, knn_pred)
print("K近邻准确率:", knn_accuracy)

完整代码如下:

python 复制代码
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 决策树分类器
dt_clf = DecisionTreeClassifier(random_state=42)
dt_clf.fit(X_train, y_train)
dt_pred = dt_clf.predict(X_test)
dt_accuracy = accuracy_score(y_test, dt_pred)
print("决策树准确率:", dt_accuracy)

# 支持向量机分类器
svm_clf = SVC(random_state=42)
svm_clf.fit(X_train, y_train)
svm_pred = svm_clf.predict(X_test)
svm_accuracy = accuracy_score(y_test, svm_pred)
print("支持向量机准确率:", svm_accuracy)

# K近邻分类器,这里取k = 3
knn_clf = KNeighborsClassifier(n_neighbors=3)
knn_clf.fit(X_train, y_train)
knn_pred = knn_clf.predict(X_test)
knn_accuracy = accuracy_score(y_test, knn_pred)
print("K近邻准确率:", knn_accuracy)

当运行上述代码时,会得到每种算法在鸢尾花测试集上的准确率,通过对比这些准确率可以对不同算法在该分类任务上的性能有一个初步的评估。请注意,不同的数据集、数据预处理方式以及算法参数调整都会对结果产生影响。

相关推荐
pp起床2 小时前
Gen_AI 补充内容 Logit Lens 和 Patchscopes
人工智能·深度学习·机器学习
天天爱吃肉82182 小时前
跟着创意天才周杰伦学新能源汽车研发测试!3年从工程师到领域专家的成长秘籍!
数据库·python·算法·分类·汽车
Rorsion3 小时前
PyTorch实现二分类(单特征输出+单层神经网络)
人工智能·pytorch·分类
勾股导航4 小时前
K-means
人工智能·机器学习·kmeans
Jay Kay4 小时前
GVPO:Group Variance Policy Optimization
人工智能·算法·机器学习
小鸡吃米…5 小时前
机器学习面试问题及答案
机器学习
Yeats_Liao6 小时前
评估体系构建:基于自动化指标与人工打分的双重验证
运维·人工智能·深度学习·算法·机器学习·自动化
断眉的派大星6 小时前
均值为0,方差为1:数据的“标准校服”
人工智能·机器学习·均值算法
Tadas-Gao6 小时前
缸中之脑:大模型架构的智能幻象与演进困局
人工智能·深度学习·机器学习·架构·大模型·llm
木枷7 小时前
Online Process Reward Learning for Agentic Reinforcement Learning
人工智能·深度学习·机器学习