机器学习最简单的分类任务入门

以鸢尾花分类任务为例,几种不同的机器学习算法(决策树、支持向量机、K近邻)进行分类,并对比结果。

一、导入必要的库

python 复制代码
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

二、数据加载与预处理

python 复制代码
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

三、决策树分类器

python 复制代码
# 决策树分类器
dt_clf = DecisionTreeClassifier(random_state=42)
dt_clf.fit(X_train, y_train)
dt_pred = dt_clf.predict(X_test)
dt_accuracy = accuracy_score(y_test, dt_pred)
print("决策树准确率:", dt_accuracy)

四、支持向量机分类器

python 复制代码
# 支持向量机分类器
svm_clf = SVC(random_state=42)
svm_clf.fit(X_train, y_train)
svm_pred = svm_clf.predict(X_test)
svm_accuracy = accuracy_score(y_test, svm_pred)
print("支持向量机准确率:", svm_accuracy)

五、K近邻分类器

python 复制代码
# K近邻分类器,这里取k = 3
knn_clf = KNeighborsClassifier(n_neighbors=3)
knn_clf.fit(X_train, y_train)
knn_pred = knn_clf.predict(X_test)
knn_accuracy = accuracy_score(y_test, knn_pred)
print("K近邻准确率:", knn_accuracy)

完整代码如下:

python 复制代码
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 决策树分类器
dt_clf = DecisionTreeClassifier(random_state=42)
dt_clf.fit(X_train, y_train)
dt_pred = dt_clf.predict(X_test)
dt_accuracy = accuracy_score(y_test, dt_pred)
print("决策树准确率:", dt_accuracy)

# 支持向量机分类器
svm_clf = SVC(random_state=42)
svm_clf.fit(X_train, y_train)
svm_pred = svm_clf.predict(X_test)
svm_accuracy = accuracy_score(y_test, svm_pred)
print("支持向量机准确率:", svm_accuracy)

# K近邻分类器,这里取k = 3
knn_clf = KNeighborsClassifier(n_neighbors=3)
knn_clf.fit(X_train, y_train)
knn_pred = knn_clf.predict(X_test)
knn_accuracy = accuracy_score(y_test, knn_pred)
print("K近邻准确率:", knn_accuracy)

当运行上述代码时,会得到每种算法在鸢尾花测试集上的准确率,通过对比这些准确率可以对不同算法在该分类任务上的性能有一个初步的评估。请注意,不同的数据集、数据预处理方式以及算法参数调整都会对结果产生影响。

相关推荐
qq_430855881 小时前
线代第二章矩阵第四课:方阵的幂
算法·机器学习·矩阵
sali-tec1 小时前
C# 基于halcon的视觉工作流-章67 深度学习-分类
开发语言·图像处理·人工智能·深度学习·算法·计算机视觉·分类
LiYingL3 小时前
针对大规模语言模型的离群值安全预训练创新,可防止离群值并保护量化准确性
人工智能·机器学习·语言模型
ekprada3 小时前
Day 37 - 早停策略与模型权重的保存
人工智能·机器学习
ComputerInBook5 小时前
代数基本概念理解——特征向量和特征值
人工智能·算法·机器学习·线性变换·特征值·特征向量
JoannaJuanCV7 小时前
自动驾驶—CARLA仿真(5)Actors与Blueprints
人工智能·机器学习·自动驾驶
背心2块钱包邮7 小时前
第9节——部分分式积分(Partial Fraction Decomposition)
人工智能·python·算法·机器学习·matplotlib
serve the people7 小时前
如何区分什么场景下用机器学习,什么场景下用深度学习
人工智能·深度学习·机器学习
csdn_aspnet7 小时前
如何用爬虫、机器学习识别方式屏蔽恶意广告
人工智能·爬虫·机器学习
JoannaJuanCV8 小时前
自动驾驶—CARLA仿真(0)报错记录
人工智能·机器学习·自动驾驶