1. 背景
这段时间项目比较忙,所以本qiang~有些耽误了学习,不过也算是百忙之中,抽取时间来支撑一个读者的需求,即爬取一些财经网站的新闻并自动聚合。
该读者看了之前的《AI资讯的自动聚合及报告生成》文章后,想要将这一套流程嵌套在财经领域,因此满打满算耗费了2-3天时间,来完成了该需求。
注意:爬虫不是本人的强项,只是一丢丢兴趣而已; 其次,本篇文章主要是用于个人学习,客官们请勿直接商业使用。
2. 面临的难点
-
爬虫框架选取: 采用之前现学现用的crawl4ai作为基础框架,使用其高阶技能来逼近模拟人访问浏览器,因为网站都存在反爬机制,如鉴权、cookie等;
-
外网新闻: 需要kexue上网;
-
新闻内容解析: 此处耗费的工作量最多,并不是html的页面解析有多难,主要是动态页面加载如何集成crawl4ai来实现,且每个新闻网站五花八门。
3. 数据源
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 数据源 | url | 备注 |
| 财lian社 | https://www.cls.cn/depth?id=1000 https://www.cls.cn/depth?id=1003 https://www.cls.cn/depth?id=1007 | 1000: 头条, 1003: A股, 1007: 环球 |
| 凤huang网 | https://finance.ifeng.com/shanklist/1-64-/ | |
| 新lang | https://finance.sina.com.cn/roll/#pageid=384&lid=2519&k=&num=50&page=1 https://finance.sina.com.cn/roll/#pageid=384&lid=2672&k=&num=50&page=1 | 2519: 财经 2672: 美股 |
| 环qiu时报 | https://finance.huanqiu.com | |
| zaobao | https://www.zaobao.com/finance/china https://www.zaobao.com/finance/world | 国内及世界 |
| fox | https://www.foxnews.com/category/us/economy https://www.foxnews.com//world/global-economy | 美国及世界 |
| cnn | https://edition.cnn.com/business https://edition.cnn.com/business/china | 国内及世界 |
| reuters | https://www.reuters.com/business | |
4. 部分源码
为了减少风险,本qiang~只列出财lian社网页的解析代码,读者如想进一步交流沟通,可私信联系。
代码片段解析:
-
schema是以json格式叠加css样式的策略,crawl4ai基于schema可以实现特定元素的结构化解析
-
js_commands是js代码,主要用于模拟浏览新闻时的下翻页
import asyncio
from crawl4ai import AsyncWebCrawler
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy
import json
from typing import Dict, Any, Union, List
import os
import datetime
import re
import hashlib
def md5(text):
m = hashlib.md5()
m.update(text.encode('utf-8'))
return m.hexdigest()
def get_datas(file_path, json_flag=True, all_flag=False, mode='r'):
"""读取文本文件"""
results = []
with open(file_path, mode, encoding='utf-8') as f:
for line in f.readlines():
if json_flag:
results.append(json.loads(line))
else:
results.append(line.strip())
if all_flag:
if json_flag:
return json.loads(''.join(results))
else:
return '\n'.join(results)
return results
def save_datas(file_path, datas, json_flag=True, all_flag=False, with_indent=False, mode='w'):
"""保存文本文件"""
with open(file_path, mode, encoding='utf-8') as f:
if all_flag:
if json_flag:
f.write(json.dumps(datas, ensure_ascii=False, indent= 4 if with_indent else None))
else:
f.write(''.join(datas))
else:
for data in datas:
if json_flag:
f.write(json.dumps(data, ensure_ascii=False) + '\n')
else:
f.write(data + '\n')
class AbstractAICrawler():
def __init__(self) -> None:
pass
def crawl():
raise NotImplementedError()
class AINewsCrawler(AbstractAICrawler):
def __init__(self, domain) -> None:
super().__init__()
self.domain = domain
self.file_path = f'data/{self.domain}.json'
self.history = self.init()
def init(self):
if not os.path.exists(self.file_path):
return {}
return {ele['id']: ele for ele in get_datas(self.file_path)}
def save(self, datas: Union[List, Dict]):
if isinstance(datas, dict):
datas = [datas]
self.history.update({ele['id']: ele for ele in datas})
save_datas(self.file_path, datas=list(self.history.values()))
async def crawl(self, url:str,
schema: Dict[str, Any]=None,
always_by_pass_cache=True,
bypass_cache=True,
headless=True,
verbose=False,
magic=True,
page_timeout=15000,
delay_before_return_html=2.0,
wait_for='',
js_code=None,
js_only=False,
screenshot=False,
headers={}):
extraction_strategy = JsonCssExtractionStrategy(schema, verbose=verbose) if schema else None
async with AsyncWebCrawler(verbose=verbose,
headless=headless,
always_by_pass_cache=always_by_pass_cache, headers=headers) as crawler:
result = await crawler.arun(
url=url,
extraction_strategy=extraction_strategy,
bypass_cache=bypass_cache,
page_timeout=page_timeout,
delay_before_return_html=delay_before_return_html,
wait_for=wait_for,
js_code=js_code,
magic=magic,
remove_overlay_elements=True,
process_iframes=True,
exclude_external_links=True,
js_only=js_only,
screenshot=screenshot
)
assert result.success, "Failed to crawl the page"
if schema:
res = json.loads(result.extracted_content)
if screenshot:
return res, result.screenshot
return res
return result.html
class FinanceNewsCrawler(AINewsCrawler):
def __init__(self, domain='') -> None:
super().__init__(domain)
def save(self, datas: Union[List, Dict]):
if isinstance(datas, dict):
datas = [datas]
self.history.update({ele['id']: ele for ele in datas})
save_datas(self.file_path, datas=datas, mode='a')
async def get_last_day_data(self):
last_day = (datetime.date.today() - datetime.timedelta(days=1)).strftime('%Y-%m-%d')
datas = self.init()
return [v for v in datas.values() if last_day in v['date']]
class CLSCrawler(FinanceNewsCrawler):
"""
财某社新闻抓取
"""
def __init__(self) -> None:
self.domain = 'cls'
super().__init__(self.domain)
self.url = 'https://www.cls.cn'
async def crawl_url_list(self, url='https://www.cls.cn/depth?id=1000'):
schema = {
'name': 'caijingwang toutiao page crawler',
'baseSelector': 'div.f-l.content-left',
'fields': [
{
'name': 'top_titles',
'selector': 'div.depth-top-article-list',
'type': 'nested_list',
'fields': [
{'name': 'href', 'type': 'attribute', 'attribute':'href', 'selector': 'a[href]'}
]
},
{
'name': 'sec_titles',
'selector': 'div.depth-top-article-list li.f-l',
'type': 'nested_list',
'fields': [
{'name': 'href', 'type': 'attribute', 'attribute':'href', 'selector': 'a[href]'}
]
},
{
'name': 'bottom_titles',
'selector': 'div.b-t-1 div.clearfix',
'type': 'nested_list',
'fields': [
{'name': 'href', 'type': 'attribute', 'attribute':'href', 'selector': 'a[href]'}
]
}
]
}
js_commands = [
"""
(async () => {{
await new Promise(resolve => setTimeout(resolve, 500));
const targetItemCount = 100;
let currentItemCount = document.querySelectorAll('div.b-t-1 div.clearfix a.f-w-b').length;
let loadMoreButton = document.querySelector('.list-more-button.more-button');
while (currentItemCount < targetItemCount) {{
window.scrollTo(0, document.body.scrollHeight);
await new Promise(resolve => setTimeout(resolve, 1000));
if (loadMoreButton) {
loadMoreButton.click();
} else {
console.log('没有找到加载更多按钮');
break;
}
await new Promise(resolve => setTimeout(resolve, 1000));
currentItemCount = document.querySelectorAll('div.b-t-1 div.clearfix a.f-w-b').length;
loadMoreButton = document.querySelector('.list-more-button.more-button');
}}
console.log(`已加载 ${currentItemCount} 个item`);
return currentItemCount;
}})();
"""
]
wait_for = ''
results = {}
menu_dict = {
'1000': '头条',
'1003': 'A股',
'1007': '环球'
}
for k, v in menu_dict.items():
url = f'https://www.cls.cn/depth?id={k}'
try:
links = await super().crawl(url, schema, always_by_pass_cache=True, bypass_cache=True, js_code=js_commands, wait_for=wait_for, js_only=False)
except Exception as e:
print(f'error {url}')
links = []
if links:
links = [ele['href'] for eles in links[0].values() for ele in eles if 'href' in ele]
links = sorted(list(set(links)), key=lambda x: x)
results.update({f'{self.url}{ele}': v for ele in links})
return results
async def crawl_newsletter(self, url, category):
schema = {
'name': '财联社新闻详情页',
'baseSelector': 'div.f-l.content-left',
'fields': [
{
'name': 'title',
'selector': 'span.detail-title-content',
'type': 'text'
},
{
'name': 'time',
'selector': 'div.m-r-10',
'type': 'text'
},
{
'name': 'abstract',
'selector': 'pre.detail-brief',
'type': 'text',
'fields': [
{'name': 'href', 'type': 'attribute', 'attribute':'href', 'selector': 'a[href]'}
]
},
{
'name': 'contents',
'selector': 'div.detail-content p',
'type': 'list',
'fields': [
{'name': 'content', 'type': 'text'}
]
},
{
'name': 'read_number',
'selector': 'div.detail-option-readnumber',
'type': 'text'
}
]
}
wait_for = 'div.detail-content'
try:
results = await super().crawl(url, schema, always_by_pass_cache=True, bypass_cache=True, wait_for=wait_for)
result = results[0]
except Exception as e:
print(f'crawler error: {url}')
return {}
return {
'title': result['title'],
'abstract': result['abstract'],
'date': result['time'],
'link': url,
'content': '\n'.join([ele['content'] for ele in result['contents'] if 'content' in ele and ele['content']]),
'id': md5(url),
'type': category,
'read_number': await self.get_first_float_number(result['read_number'], r'[-+]?\d*\.\d+|\d+'),
'time': datetime.datetime.now().strftime('%Y-%m-%d')
}
async def get_first_float_number(self, text, pattern):
match = re.search(pattern, text)
if match:
return round(float(match.group()), 4)
return 0
async def crawl(self):
link_2_category = await self.crawl_url_list()
for link, category in link_2_category.items():
_id = md5(link)
if _id in self.history:
continue
news = await self.crawl_newsletter(link, category)
if news:
self.save(news)
return await self.get_last_day_data()
if __name__ == '__main__':
asyncio.run(CLSCrawler().crawl())
- 总结
一句话足矣~
开发了一款新闻资讯的自动聚合的工具,基于crawl4ai框架实现。
有问题可以私信或留言沟通!
6. 参考
(1) Crawl4ai: https://github.com/unclecode/crawl4ai