【大模型量化】GPTQ量化模型

20241217

GPTQ量化模型推理时怎么操作?

在GPTQ(一种训练后量化)模型进行推理时,主要步骤如下:

  1. 输入数据准备:将输入数据(如文本或图像)转换为模型可以处理的格式。这通常涉及将输入数据转换为模型的输入层的形状和数据类型。

  2. 量化模型加载 :加载已经训练并量化的模型。这包括加载量化后的权重(weights)和可能的量化参数(如scale和zero_point)(占用显存为scale 缓冲)。

  3. 推理阶段数据处理:在推理阶段,输入数据可能需要进行预处理或归一化,以确保与训练时的数据分布一致。这可能包括对输入数据进行缩放或标准化,以适应量化模型的输入范围。

  4. 推理计 算:在推理阶段,模型的权重和输入数据将进行计算。这包括矩阵乘法和可能的激活函数计算。在GPTQ中,权重是int8格式的,而输入数据通常是fp16或bf16格式的。由于硬件(如NVIDIA的GPU)支持int8和fp16的混合运算,因此可以直接在不需要反量化的情况下进行计算。

  5. 结果处理:处理推理结果,可能包括将输出转换回原始数据类型或进行后处理,如解码或解释。

总之,GPTQ量化模型在推理时主要通过加载量化模型、准备输入数据、进行推理计算和处理结果来实现高效的推理。由于硬件支持int8和fp16的混合运算,因此可以直接在不需要反量化的情况下进行计算,从而提高推理速度。

QLoRA、GPTQ:模型量化概述
[LLM量化系列]GPTQ & SmoothQuant & AWQ 代码解析

相关推荐
Bathwind-w2 小时前
FOC开发工具学习
学习
Coder_Boy_2 小时前
DDD从0到企业级:迭代式学习 (共17章)之 四
java·人工智能·驱动开发·学习
deng-c-f3 小时前
Linux C/C++ 学习日记(49):线程池
c++·学习·线程池
HyperAI超神经3 小时前
【vLLM 学习】Prithvi Geospatial Mae
人工智能·python·深度学习·学习·大语言模型·gpu·vllm
TL滕5 小时前
从0开始学算法——第十八天(分治算法)
笔记·学习·算法
思成不止于此6 小时前
【MySQL 零基础入门】MySQL 约束精讲(一):基础约束篇
数据库·笔记·sql·学习·mysql
小黄人软件6 小时前
【过度滥用眼】真正的理解,从闭眼开始:如何把“眼睛视觉依赖”降到最低,把大脑效率提到最高。【最少用眼的工作与学习体系】
学习
老华带你飞6 小时前
建筑材料管理|基于springboot 建筑材料管理系统(源码+数据库+文档)
java·数据库·vue.js·spring boot·后端·学习·spring
L.fountain7 小时前
图像自回归生成(Auto-regressive image generation)实战学习(一)
人工智能·深度学习·学习·计算机视觉·图像自回归
TL滕7 小时前
从0开始学算法——第十八天(分治算法练习)
笔记·学习·算法