大模型系列——投机解码:Prompt Lookup Decoding代码解读

官方代码见:GitHub - apoorvumang/prompt-lookup-decoding

UPDATE 2 : This method is now available in vLLM as well by setting speculative_model="[ngram]" 🥳

UPDATE : This has been added to the transformers library. Please see this for a code example, or simply add prompt_lookup_num_tokens=10 to your model.generate(...) call.

TLDR : We modify speculative decoding where we replace the draft model with simple string matching in the prompt to generate candidate token sequences. This results in significant speedups (2x-4x) in input-grounded tasks, with no effect on output quality. This method can be used with any decoder model without model changes or external datastore, and with both greedy and sampling techniques.

Intuition : In several LLM use cases where you're doing input grounded generation (summarization, document QA, multi-turn chat, code editing), there is high n-gram overlap between LLM input (prompt) and LLM output. This could be entity names, phrases, or code chunks that the LLM directly copies from the input while generating the output. Prompt lookup exploits this pattern to speed up autoregressive decoding in LLMs.

python 复制代码
def find_candidate_pred_tokens(input_ids, max_ngram_size=3, num_pred_tokens=10):
    input_length = input_ids.size(1)

    for ngram_size in range(max_ngram_size, 0, -1):
        # Extract the last n tokens as our search ngram
        ngram = input_ids[0, -ngram_size:].tolist()

        # Create sliding windows of size ngram_size
        windows = input_ids.unfold(dimension=1, size=ngram_size, step=1)

        # Convert ngram to a tensor for comparison
        ngram_tensor = torch.tensor(ngram, device=input_ids.device).unsqueeze(0)

        # Find where the windows match the ngram
        matches = (windows == ngram_tensor).all(dim=2)

        # Get the indices of matches
        match_indices = matches.nonzero(as_tuple=True)[1]

        # Iterate through match indices to find a valid continuation
        for idx in match_indices:
            start_idx = idx + ngram_size
            end_idx = start_idx + num_pred_tokens
            # Ensure we don't go beyond the length of input_ids and avoid self-match
            if end_idx <= input_length and start_idx < input_length - ngram_size:
                return input_ids[0, start_idx:end_idx]

    # If no match is found, return an empty tensor
    return torch.tensor([], dtype=torch.long, device=input_ids.device)

ODOs/Thoughts/Future work

  • There's probably better ways to do stringmatching than the current one, and there are several obvious things to improve eg. what to do when there are multiple matches? Whats the ideal length of continuation?
  • We haven't yet tried sampling, although there's no reason it shouldn't work.
    • Here, one additional thing to test would be whether prompt lookup while sampling can affect hallucination rates, since this artifically increases probability of sampling exact sequences from input (this was suggest by my colleague Shwetha S)
  • Testing actual FLOPs impact and tradeoffs is needed
  • Also need to figure out best hyperparams - 3 and 10 were chosen on very little testing
  • It would be an interesting challenge to design the "best lookup function" for decoding, could even be a competition?

这个方法可能还是有问题的,正如坐着所说,可能存在幻觉,不一定ngram匹配上的就能加速

相关推荐
美人鱼战士爱学习1 小时前
2024 arXiv Cost-Efficient Prompt Engineering for Unsupervised Entity Resolution
prompt
水的精神1 小时前
写好 Prompt 的 12 条实践经验
prompt
Wilber的技术分享5 小时前
【大模型实战笔记 1】Prompt-Tuning方法
人工智能·笔记·机器学习·大模型·llm·prompt
relis5 小时前
解密llama.cpp:Prompt Processing如何实现高效推理?
prompt·llama
relis1 天前
解密大语言模型推理:Prompt Processing 的内存管理与计算优化
android·语言模型·prompt
relis2 天前
大语言模型推理的幕后英雄:深入解析Prompt Processing工作机制
人工智能·语言模型·prompt
zzywxc7872 天前
深入探讨AI三大领域的核心技术、实践方法以及未来发展趋势,结合具体代码示例、流程图和Prompt工程实践,全面展示AI编程的强大能力。
人工智能·spring·机器学习·ios·prompt·流程图·ai编程
relis2 天前
大语言模型推理揭秘:Prompt Processing阶段如何高效处理输入提示?
人工智能·语言模型·prompt
relis2 天前
解密llama.cpp:从Prompt到Response的完整技术流程剖析
prompt·llama
JasonRobert2 天前
Datawhale AI夏令营复盘[特殊字符]:我如何用一个Prompt,在Coze Space上“画”出一个商业级网页?
人工智能·prompt