曲线的测地曲率

测地曲率

设 S : r ( u , v ) S:r(u,v) S:r(u,v)是曲面, γ ( s ) = r ( u ( s ) , v ( s ) ) \gamma(s)=r(u(s),v(s)) γ(s)=r(u(s),v(s))是 S S S上的一条弧长参数化曲线。

1.称 K g ( s ) = D γ ˙ d s = ( γ ¨ ( s ) ) T \mathbb{K}_g(s)=\frac{D\dot{\gamma}}{d\boldsymbol{s}}=(\ddot{\gamma}(s))^T Kg(s)=dsDγ˙=(γ¨(s))T为 γ ( s ) \gamma(s) γ(s)的测地曲率向量;

2.称 k g ( s ) = ⟨ k g , n ∧ γ ˙ ⟩ = ⟨ r ¨ , n ∧ γ ˙ ⟩ k_g(s)=\langle\mathbb{k}_\mathbf{g},n\wedge\dot{\gamma}\rangle=\langle\ddot{r},n\wedge\dot{\gamma}\rangle kg(s)=⟨kg,n∧γ˙⟩=⟨r¨,n∧γ˙⟩为测地曲率。

注意测地曲率可以是负的。换句话说,设 e 1 = γ ˙ e_1=\dot{\gamma} e1=γ˙, e 3 = n e_3=n e3=n, e 2 = n ∧ e 1 e_2=n\wedge e_1 e2=n∧e1,则 { γ ; e 1 , e 2 , e 3 } \{\gamma;e_1,e_2,e_3\} {γ;e1,e2,e3}是沿 γ ( s ) \gamma(s) γ(s)的右手系正交活动标架。


k g = D e 1 d s \mathbb{k}_g=\frac{D\boldsymbol{e}_1}{d\boldsymbol{s}} kg=dsDe1
k g = ⟨ D e 1 d s , e 2 ⟩ = − ⟨ D e 2 d s , e 1 ⟩ k_g=\langle\frac{D\boldsymbol{e}_1}{d\boldsymbol{s}},e_2\rangle=-\langle\frac{D\boldsymbol{e}_2}{d\boldsymbol{s}},e_1\rangle kg=⟨dsDe1,e2⟩=−⟨dsDe2,e1⟩

另外注意到
⟨ D e 1 d s , e 1 ⟩ = 0 \langle\frac{De_1}{ds},e_1\rangle=0 ⟨dsDe1,e1⟩=0

所以

k g = D e 1 d s = k g e 2 , ∣ k g ∣ = ∣ k g ∣ . \mathbb{k}_g=\frac{D\boldsymbol{e}_1}{d\boldsymbol{s}}=k_ge_2,|\mathbb{k}_g|=|k_g|. kg=dsDe1=kge2,∣kg∣=∣kg∣.

回顾曲线的曲率和法曲率, γ \gamma γ的曲率向量 γ ¨ \ddot{\gamma} γ¨分解为切向和法向的两部分,即 γ ¨ = k g + k n n \ddot{\gamma}=\mathbb{k}_g+k_nn γ¨=kg+knn

从而曲率、法曲率、测地曲率满足 k 2 = k g 2 + k n 2 ; k^2=k_g^2+k_n^2; k2=kg2+kn2;