钢材缺陷识别分割数据集labelme格式693张4类别

数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件)

图片数量(jpg文件个数):693

标注数量(json文件个数):693

标注类别数:4

标注类别名称:["Crack","Welding line","Porosity","Spatters"]

每个类别标注的框数:

Crack count = 297

Welding line count = 979

Porosity count = 3644

Spatters count = 5814

使用标注工具:labelme=5.5.0

标注规则:对类别进行画多边形框polygon

重要说明:可以将数据集用labelme打开编辑,json数据集需自己转成mask或者yolo格式或者coco格式作语义分割或者实例分割

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

图片预览:

标注例子:

相关推荐
大山同学6 小时前
深度学习任务分类与示例(一)
人工智能·深度学习·分类
童话名剑6 小时前
神经风格迁移(吴恩达深度学习笔记)
深度学习·机器学习·计算机视觉·特征检测·神经风格迁移
北京地铁1号线7 小时前
人工智能岗位招聘专业笔试试卷及答案
人工智能·深度学习·计算机视觉·大语言模型
叫我:松哥8 小时前
基于Flask框架开发的二手房数据分析与推荐管理平台,集成大数据分析、机器学习预测和智能推荐技术
大数据·python·深度学习·机器学习·数据分析·flask
2501_942191778 小时前
【深度学习应用】香蕉镰刀菌症状识别与分类:基于YOLO13-C3k2-MBRConv5模型的实现与分析
人工智能·深度学习·分类
知乎的哥廷根数学学派9 小时前
基于卷积特征提取和液态神经网络的航空发动机剩余使用寿命预测算法(python)
人工智能·pytorch·python·深度学习·神经网络·算法
高洁019 小时前
AIGC技术与进展(2)
人工智能·python·深度学习·机器学习·数据挖掘
岑梓铭9 小时前
YOLO深度学习(计算机视觉)—毕设笔记(yolo训练效率加快)
人工智能·笔记·深度学习·神经网络·yolo·计算机视觉
AI街潜水的八角9 小时前
基于深度学习神经网络YOLOv4目标检测的汽车车牌识别系统
深度学习·神经网络·yolo
AI街潜水的八角9 小时前
基于keras框架的LeNet/AlexNet/Vgg16深度学习神经网络花卉/花朵分类识别系统源码
深度学习·神经网络·keras