一个GLSL Shader的格式化算法(LALR解析器)
在进行OpenGL程序开发时,我需要自行解析`string`类型的Shader代码,抽取出里面的某些变量名和subroutine名。
由于找不到可用的GLSL Shader解析器,就照着虎书(《现代编译原理-c语言描述》)自己写了个LALR Generator,实际上包含了(词法分析器+语法分析器+格式化框架)的(LR(0)、SLR(1)、LALR(1)、LR(1))全自动生成,支持yacc的优先级指令和Shift/Reduce、Reduce/Reduc冲突解决功能。
本文的GLSL Shader的格式化工具(下载链接在这里https://files.cnblogs.com/files/bitzhuwei/GLSL.Formatter.net8.0.rar?t=1735122490&download=true ),就是用我的LALR Generator,根据GLSL4.60.8的文法生成的,如下所述。
GLSL4.60.8的文法
#extractor <GLSL4.60.8.st.ext>
translation_unit :
external_declaration
| translation_unit external_declaration
;
external_declaration :
function_definition
| declaration
| ';'
;
function_definition :
function_prototype compound_statement/* compound_statement_no_new_scope */
;
variable_identifier :
'identifier'
;
primary_expression :
variable_identifier
| 'intConstant'
| 'uintConstant'
| 'floatConstant'
| 'boolConstant'
| 'doubleConstant'
| '(' expression ')'
;
postfix_expression :
primary_expression
| postfix_expression '[' integer_expression ']'
| function_call
| postfix_expression '.' 'identifier' // FIELD_SELECTION
| postfix_expression '++'
| postfix_expression '--'
;
integer_expression :
expression
;
function_call :
function_call_or_method
;
function_call_or_method :
function_call_generic
;
function_call_generic :
function_call_header_with_parameters ')'
| function_call_header_no_parameters ')'
;
function_call_header_no_parameters :
function_call_header 'void'
| function_call_header
;
function_call_header_with_parameters :
function_call_header assignment_expression
| function_call_header_with_parameters ',' assignment_expression
;
function_call_header :
function_identifier '('
;
function_identifier :
type_specifier
| postfix_expression
;
unary_expression :
postfix_expression
| '++' unary_expression
| '--' unary_expression
| unary_operator unary_expression
;
unary_operator :
'+'
| '-'
| '!'
| '~'
;
multiplicative_expression :
unary_expression
| multiplicative_expression '*' unary_expression
| multiplicative_expression '/' unary_expression
| multiplicative_expression '%' unary_expression
;
additive_expression :
multiplicative_expression
| additive_expression '+' multiplicative_expression
| additive_expression '-' multiplicative_expression
;
shift_expression :
additive_expression
| shift_expression '<<' additive_expression
| shift_expression '>>' additive_expression
;
relational_expression :
shift_expression
| relational_expression '<' shift_expression
| relational_expression '>' shift_expression
| relational_expression '<=' shift_expression
| relational_expression '>=' shift_expression
;
equality_expression :
relational_expression
| equality_expression '==' relational_expression
| equality_expression '!=' relational_expression
;
and_expression :
equality_expression
| and_expression '&' equality_expression
;
exclusive_or_expression :
and_expression
| exclusive_or_expression '^' and_expression
;
inclusive_or_expression :
exclusive_or_expression
| inclusive_or_expression '|' exclusive_or_expression
;
logical_and_expression :
inclusive_or_expression
| logical_and_expression '&&' inclusive_or_expression
;
logical_xor_expression :
logical_and_expression
| logical_xor_expression '^^' logical_and_expression
;
logical_or_expression :
logical_xor_expression
| logical_or_expression '||' logical_xor_expression
;
conditional_expression :
logical_or_expression
| logical_or_expression '?' expression ':' assignment_expression
;
assignment_expression :
conditional_expression
| unary_expression assignment_operator assignment_expression
;
assignment_operator :
'='
| '*='
| '/='
| '%='
| '+='
| '-='
| '<<='
| '>>='
| '&='
| '^='
| '|='
;
expression :
assignment_expression
| expression ',' assignment_expression
;
constant_expression :
conditional_expression
;
declaration :
function_prototype ';'
| init_declarator_list ';'
| 'precision' precision_qualifier type_specifier ';'
| type_qualifier 'identifier' '{' struct_declaration_list '}' ';'
| type_qualifier 'identifier' '{' struct_declaration_list '}' 'identifier' ';'
| type_qualifier 'identifier' '{' struct_declaration_list '}' 'identifier' array_specifier ';'
| type_qualifier ';'
| type_qualifier 'identifier' ';'
| type_qualifier 'identifier' identifier_list ';'
;
identifier_list :
',' 'identifier'
| identifier_list ',' 'identifier'
;
function_prototype :
function_declarator ')'
;
function_declarator :
function_header
| function_header_with_parameters
;
function_header_with_parameters :
function_header parameter_declaration
| function_header_with_parameters ',' parameter_declaration
;
function_header :
fully_specified_type 'identifier' '('
;
parameter_declarator :
type_specifier 'identifier'
| type_specifier 'identifier' array_specifier
;
parameter_declaration :
type_qualifier parameter_declarator
| parameter_declarator
| type_qualifier parameter_type_specifier
| parameter_type_specifier
;
parameter_type_specifier :
type_specifier
;
init_declarator_list :
single_declaration
| init_declarator_list ',' 'identifier'
| init_declarator_list ',' 'identifier' array_specifier
| init_declarator_list ',' 'identifier' array_specifier '=' initializer
| init_declarator_list ',' 'identifier' '=' initializer
;
single_declaration :
fully_specified_type
| fully_specified_type 'identifier'
| fully_specified_type 'identifier' array_specifier
| fully_specified_type 'identifier' array_specifier '=' initializer
| fully_specified_type 'identifier' '=' initializer
;
fully_specified_type :
type_specifier
| type_qualifier type_specifier
;
invariant_qualifier :
'invariant'
;
interpolation_qualifier :
'smooth'
| 'flat'
| 'noperspective'
;
layout_qualifier :
'layout' '(' layout_qualifier_id_list ')'
;
layout_qualifier_id_list :
layout_qualifier_id
| layout_qualifier_id_list ',' layout_qualifier_id
;
layout_qualifier_id :
'identifier'
| 'identifier' '=' constant_expression
| 'shared'
;
precise_qualifier :
'precise'
;
type_qualifier :
single_type_qualifier
| type_qualifier single_type_qualifier
;
single_type_qualifier :
storage_qualifier
| layout_qualifier
| precision_qualifier
| interpolation_qualifier
| invariant_qualifier
| precise_qualifier
;
storage_qualifier :
'const'
| 'in'
| 'out'
| 'inout'
| 'centroid'
| 'patch'
| 'sample'
| 'uniform'
| 'buffer'
| 'shared'
| 'coherent'
| 'volatile'
| 'restrict'
| 'readonly'
| 'writeonly'
| 'subroutine'
| 'subroutine' '(' type_name_list ')'
;
type_name_list :
'type_name'
| type_name_list ',' 'type_name'
;
type_specifier :
type_specifier_nonarray
| type_specifier_nonarray array_specifier
;
array_specifier :
'[' ']'
| '[' conditional_expression ']'
| array_specifier '[' ']'
| array_specifier '[' conditional_expression ']'
;
type_specifier_nonarray :
'void'
| 'float'
| 'double'
| 'int'
| 'uint'
| 'bool'
| 'vec2'
| 'vec3'
| 'vec4'
| 'dvec2'
| 'dvec3'
| 'dvec4'
| 'bvec2'
| 'bvec3'
| 'bvec4'
| 'ivec2'
| 'ivec3'
| 'ivec4'
| 'uvec2'
| 'uvec3'
| 'uvec4'
| 'mat2'
| 'mat3'
| 'mat4'
| 'mat2x2'
| 'mat2x3'
| 'mat2x4'
| 'mat3x2'
| 'mat3x3'
| 'mat3x4'
| 'mat4x2'
| 'mat4x3'
| 'mat4x4'
| 'dmat2'
| 'dmat3'
| 'dmat4'
| 'dmat2x2'
| 'dmat2x3'
| 'dmat2x4'
| 'dmat3x2'
| 'dmat3x3'
| 'dmat3x4'
| 'dmat4x2'
| 'dmat4x3'
| 'dmat4x4'
| 'atomic_uint'
| 'sampler2D'
| 'sampler3D'
| 'samplerCube'
| 'sampler2DShadow'
| 'samplerCubeShadow'
| 'sampler2DArray'
| 'sampler2DArrayShadow'
| 'samplerCubeArray'
| 'samplerCubeArrayShadow'
| 'isampler2D'
| 'isampler3D'
| 'isamplerCube'
| 'isampler2DArray'
| 'isamplerCubeArray'
| 'usampler2D'
| 'usampler3D'
| 'usamplerCube'
| 'usampler2DArray'
| 'usamplerCubeArray'
| 'sampler1D'
| 'sampler1DShadow'
| 'sampler1DArray'
| 'sampler1DArrayShadow'
| 'isampler1D'
| 'isampler1DArray'
| 'usampler1D'
| 'usampler1DArray'
| 'sampler2DRect'
| 'sampler2DRectShadow'
| 'isampler2DRect'
| 'usampler2DRect'
| 'samplerBuffer'
| 'isamplerBuffer'
| 'usamplerBuffer'
| 'sampler2DMS'
| 'isampler2DMS'
| 'usampler2DMS'
| 'sampler2DMSArray'
| 'isampler2DMSArray'
| 'usampler2DMSArray'
| 'image2D'
| 'iimage2D'
| 'uimage2D'
| 'image3D'
| 'iimage3D'
| 'uimage3D'
| 'imageCube'
| 'iimageCube'
| 'uimageCube'
| 'imageBuffer'
| 'iimageBuffer'
| 'uimageBuffer'
| 'image1D'
| 'iimage1D'
| 'uimage1D'
| 'image1DArray'
| 'iimage1DArray'
| 'uimage1DArray'
| 'image2DRect'
| 'iimage2DRect'
| 'uimage2DRect'
| 'image2DArray'
| 'iimage2DArray'
| 'uimage2DArray'
| 'imageCubeArray'
| 'iimageCubeArray'
| 'uimageCubeArray'
| 'image2DMS'
| 'iimage2DMS'
| 'uimage2DMS'
| 'image2DMSArray'
| 'iimage2DMSArray'
| 'uimage2DMSArray'
| struct_specifier
| 'type_name'
;
precision_qualifier :
'highp'
| 'mediump'
| 'lowp'
;
struct_specifier :
'struct' 'type_name'/* 'identifier' */ '{' struct_declaration_list '}'
| 'struct' '{' struct_declaration_list '}'
;
struct_declaration_list :
struct_declaration
| struct_declaration_list struct_declaration
;
struct_declaration :
type_specifier struct_declarator_list ';'
| type_qualifier type_specifier struct_declarator_list ';'
;
struct_declarator_list :
struct_declarator
| struct_declarator_list ',' struct_declarator
;
struct_declarator :
'identifier'
| 'identifier' array_specifier
;
initializer :
assignment_expression
| '{' initializer_list '}'
| '{' initializer_list ',' '}'
;
initializer_list :
initializer
| initializer_list ',' initializer
;
declaration_statement :
declaration
;
statement :
compound_statement
| simple_statement
;
simple_statement :
declaration_statement
| expression_statement
| selection_statement
| switch_statement
| case_label
| iteration_statement
| jump_statement
;
compound_statement :
'{' '}'
| '{' statement_list '}'
;
/* merge into statement
statement_no_new_scope :
compound_statement_no_new_scope
| simple_statement
;
*/
/* merge into compound_statement
compound_statement_no_new_scope :
'{' '}'
| '{' statement_list '}'
;
*/
statement_list :
statement
| statement_list statement
;
expression_statement :
';'
| expression ';'
;
selection_statement :
'if' '(' expression ')' selection_rest_statement
;
selection_rest_statement :
statement 'else' statement
| statement
;
condition :
expression
| fully_specified_type 'identifier' '=' initializer
;
switch_statement :
'switch' '(' expression ')' '{' switch_statement_list '}'
;
switch_statement_list :
empty
| statement_list
;
case_label :
'case' expression ':'
| 'default' ':'
;
iteration_statement :
'while' '(' condition ')' statement/* statement_no_new_scope */
| 'do' statement 'while' '(' expression ')' ';'
| 'for' '(' for_init_statement for_rest_statement ')' statement/* statement_no_new_scope */
;
for_init_statement :
expression_statement
| declaration_statement
;
conditionopt :
condition
| empty
;
for_rest_statement :
conditionopt ';'
| conditionopt ';' expression
;
jump_statement :
'continue' ';'
| 'break' ';'
| 'return' ';'
| 'return' expression ';'
| 'discard' ';'
;
// lexical statements
// no need : 'struct' 'identifier' '{' struct_declaration_list '}'
// now I changed it into 'struct' 'type_name' '{' struct_declaration_list '}'
// only identifier next to 'struct' is a user-defined type and should be a 'type_name' token.
'type_name' %%<'struct'>[a-zA-Z_][a-zA-Z0-9_]*%%
'intConstant' %%[-+]?[0-9]+%%
'intConstant' %%0x[0-9A-Fa-f]+%%
'uintConstant' %%[-+]?[0-9]+[uU]%%
'uintConstant' %%0x[0-9A-Fa-f]+[uU]%%
'floatConstant' %%[-+]?[0-9]+([.][0-9]+)?([Ee][-+]?[0-9]+)?[fF]%%
'boolConstant' %%true/[^a-zA-Z0-9_]%%
'boolConstant' %%false/[^a-zA-Z0-9_]%%
'doubleConstant' %%[-+]?[0-9]+([.][0-9]+)?([Ee][-+]?[0-9]+)?%%
'identifier' %%[a-zA-Z_][a-zA-Z0-9_]*%%
%grammarName GLSL
%blockComment on
%inlineComment on
有了解析器,就有了单词流List<Token>
和语法树Node
。面对GLSL代码的语法树,我们如何对源代码进行格式化呢?
格式化的目的是让源代码从书写上更适宜人类阅读。具体来说,格式化要做的事,只是增减某些空白符(空格、tab符、换行符)而已,不会修改具有语法意义的内容。
在C#中,
if (x >0) {t = x;x = 0;
}
会被格式化为
if (x > 0) {
t = x; x = 0;
}
而
if (x > 0) {t = x;
x= 0;
}
会被格式化为
if (x > 0) {
t = x;
x = 0;
}
同样意义的源代码,格式化结果却不同。这有些复杂。
我们将问题拆开,一步一步来。
首先,我们忽略多行注释blockComment、单行注释inlineComment和源代码中原有的空白符。
此时,一个if(x>0){t=x;x=0;}
就应当被格式化为:
if (x > 0) {
t = x;
x = 0;
}
也就是说,语法树中的每一部分,都可以自己判断出应当如何格式化。用递归的方式遍历语法树即可。
现在来考虑注释。注释可能出现在List<Token>
(词法分析器的分析结果)里的任意位置上,属实调皮。于是就有这样一个想法,利用C#的yield return
语法糖,我们执行下述算法:
遍历`List<Token>`:
如果下一个要进行格式化的Token是注释,那么就在当前位置输出它并换行。
如果下一个要进行格式化的Token不是注释,那么就用`yield return`的方式,在语法树上格式化地输出它(输出它+某些空白符)。
只要在语法树每输出一个Token
时,都进行一次yield return
(return什么无所谓),那么yield return
就能和遍历List<Token>
的过程同步完成。
现在能够带着注释格式化了,但是无法解决这样的情况:上一行和下一行代码之间有好几个空行(即换行符),上述格式化过程会无视之。
完全的格式化算法要继承上述方法的思路,并加强如下:
语法树的各类语法块`Node`分别实现自己内部的格式化办法。
语法块`Node`要根据上一级`Node`传递来的要求,在输出自己内部的第一个`Token`之前,先输出多少个换行符和空格。
语法块`Node`要告知自己的每个下一级`Node`,它希望这些子级先输出多少个换行符和空格。
每个`Token`根据(上级传递来的要求+它与前一个`Token`之间的位置关系(间隔多少空格和换行符))输出自己前面的空白符,而后输出自己的内容。
每个语法块`Node`都服从直接上级的要求,并对各个直接下级发出要求。通过这样接力的方式,就可以通过遍历一次语法树来输出格式化的代码了。
同学们可以下载链接中的工具查看效果,里面还有一些示例shader。