1961-2022年中国大陆多干旱指数数据集(SPI/SPEI/EDDI/PDSI/SC-PDSI/VPD)

DOI: 10.5194/essd-2024-270

干旱指数对于评估和管理缺水和农业风险至关重要;然而,现有数据集中缺乏统一的数据基础,导致不一致,对干旱指数的可比性提出了挑战。本研究致力于创建CHM_Drought,这是一个创新且全面的长期气象干旱数据集,空间分辨率为0.1°,数据收集时间为1961-2022年,中国大陆年。它具有6个关键的气象干旱指数:标准化降水指数(SPI)、标准化降水蒸散指数(SPEI)、蒸发需求干旱指数(EDDI)、帕尔默干旱严重程度指数(PDSI)、自校准帕尔默干旱严重程度指数(SC-PDSI)和蒸气压赤字(VPD),其中SPI、SPEI和EDDI包含2周和1-12个月的多尺度特征。该数据集具有高密度气象站数据的综合应用和从基本气象要素出发的完整框架(中国水文气象数据集,CHM)。该数据集在准确捕捉中国大陆干旱事件方面表现出色,其对2022年长江流域夏季干旱的详细描述就证明了这一点。此外,为了评估CHM_Drought,本文利用气候研究单元(CRU)和CN05.1数据计算的干旱指数进行了一致性检验,发现所有指数总体上具有较高的一致性,且2周尺度SPI、SPEI和EDDI在干旱监测中具有潜在的预警作用。总体而言,我们的数据集弥补了中国在高精度多指标干旱数据方面的差距,完整的基于CHM的框架保证了数据集的一致性和可靠性,有助于提高对中国干旱模式和趋势的理解。

1961-2022年,0.1°,中国大陆,包括SPI SPEI EDDI PDSI SC-PDSI VPD,nc格式,数据可以通过下方链接获取。

复制代码
https://figshare.com/articles/dataset/CHM_Drought/25656951/2
相关推荐
clarance201521 小时前
2025主流BI工具可信能力评估报告:从合规到智能的架构解析
数据库·人工智能·信息可视化·架构·数据挖掘·数据分析
davawang1 天前
BI报表及可视化分析类工具使用经验总结(上)
数据分析·报表·bi
没有梦想的咸鱼185-1037-16631 天前
【降尺度】基于统计方法与机器学习技术在气候降尺度中的实践应用
人工智能·机器学习·数据分析
Are you manufacturer1 天前
Tetuan的电力消耗数据进行时间序列预测
数据分析·lstm
雷电法拉珑1 天前
Alpha158因子初步介绍
数据分析
智航GIS1 天前
ArcGIS大师之路500技---045最小外接矩形
arcgis
hanfeng52681 天前
ArcGIS设置随机点
arcgis
代码洲学长1 天前
文本数据分析的基础知识
python·自然语言处理·数据分析
智航GIS1 天前
ArcGIS大师之路500技---044检查几何与修复几何
arcgis
青春不败 177-3266-05201 天前
如何利用有限的数据发表更多的SCI论文?——利用ArcGIS探究环境和生态因子对水体、土壤和大气污染物的影响
arcgis·gis·生态学·生态系统服务·大气污染·土壤科学·生态因子