1961-2022年中国大陆多干旱指数数据集(SPI/SPEI/EDDI/PDSI/SC-PDSI/VPD)

DOI: 10.5194/essd-2024-270

干旱指数对于评估和管理缺水和农业风险至关重要;然而,现有数据集中缺乏统一的数据基础,导致不一致,对干旱指数的可比性提出了挑战。本研究致力于创建CHM_Drought,这是一个创新且全面的长期气象干旱数据集,空间分辨率为0.1°,数据收集时间为1961-2022年,中国大陆年。它具有6个关键的气象干旱指数:标准化降水指数(SPI)、标准化降水蒸散指数(SPEI)、蒸发需求干旱指数(EDDI)、帕尔默干旱严重程度指数(PDSI)、自校准帕尔默干旱严重程度指数(SC-PDSI)和蒸气压赤字(VPD),其中SPI、SPEI和EDDI包含2周和1-12个月的多尺度特征。该数据集具有高密度气象站数据的综合应用和从基本气象要素出发的完整框架(中国水文气象数据集,CHM)。该数据集在准确捕捉中国大陆干旱事件方面表现出色,其对2022年长江流域夏季干旱的详细描述就证明了这一点。此外,为了评估CHM_Drought,本文利用气候研究单元(CRU)和CN05.1数据计算的干旱指数进行了一致性检验,发现所有指数总体上具有较高的一致性,且2周尺度SPI、SPEI和EDDI在干旱监测中具有潜在的预警作用。总体而言,我们的数据集弥补了中国在高精度多指标干旱数据方面的差距,完整的基于CHM的框架保证了数据集的一致性和可靠性,有助于提高对中国干旱模式和趋势的理解。

1961-2022年,0.1°,中国大陆,包括SPI SPEI EDDI PDSI SC-PDSI VPD,nc格式,数据可以通过下方链接获取。

复制代码
https://figshare.com/articles/dataset/CHM_Drought/25656951/2
相关推荐
jiaozi_zzq16 分钟前
2026 高职财务专业就业方向与进阶指南
大数据·数据分析·证书·财务
梦仔生信进阶5 小时前
【零基础生信入门】知识从头梳理
数据分析
十六年开源服务商6 小时前
WordPress建站与数据可视化解决方案
信息可视化·数据挖掘·数据分析
weixin_446260857 小时前
揭开数据分析的新篇章:OpenBB金融数据平台
金融·数据挖掘·数据分析
YangYang9YangYan8 小时前
2026年大专大数据与会计专业核心证书推荐
大数据·学习·数据分析
wang_yb17 小时前
前注意加工:让你的图表抓住读者的眼球
数据分析·databook
databook17 小时前
前注意加工:让你的图表抓住读者的眼球
python·数据分析·数据可视化
computersciencer1 天前
用动态和微观的观点理解微分
数学建模·数据分析·微积分·高等数学
B站计算机毕业设计之家1 天前
大数据毕业设计:基于python图书数据分析可视化系统 书籍大屏 爬虫 清洗 可视化 当当网书籍数据分析 Django框架 图书推荐 大数据
大数据·爬虫·python·机器学习·自然语言处理·数据分析·课程设计
hk11241 天前
【Adversarial/Forensics】2026年度对抗性攻击防御与持久化内存取证基准索引 (Benchmark Index)
人工智能·网络安全·数据分析·系统架构·数据集