1961-2022年中国大陆多干旱指数数据集(SPI/SPEI/EDDI/PDSI/SC-PDSI/VPD)

DOI: 10.5194/essd-2024-270

干旱指数对于评估和管理缺水和农业风险至关重要;然而,现有数据集中缺乏统一的数据基础,导致不一致,对干旱指数的可比性提出了挑战。本研究致力于创建CHM_Drought,这是一个创新且全面的长期气象干旱数据集,空间分辨率为0.1°,数据收集时间为1961-2022年,中国大陆年。它具有6个关键的气象干旱指数:标准化降水指数(SPI)、标准化降水蒸散指数(SPEI)、蒸发需求干旱指数(EDDI)、帕尔默干旱严重程度指数(PDSI)、自校准帕尔默干旱严重程度指数(SC-PDSI)和蒸气压赤字(VPD),其中SPI、SPEI和EDDI包含2周和1-12个月的多尺度特征。该数据集具有高密度气象站数据的综合应用和从基本气象要素出发的完整框架(中国水文气象数据集,CHM)。该数据集在准确捕捉中国大陆干旱事件方面表现出色,其对2022年长江流域夏季干旱的详细描述就证明了这一点。此外,为了评估CHM_Drought,本文利用气候研究单元(CRU)和CN05.1数据计算的干旱指数进行了一致性检验,发现所有指数总体上具有较高的一致性,且2周尺度SPI、SPEI和EDDI在干旱监测中具有潜在的预警作用。总体而言,我们的数据集弥补了中国在高精度多指标干旱数据方面的差距,完整的基于CHM的框架保证了数据集的一致性和可靠性,有助于提高对中国干旱模式和趋势的理解。

1961-2022年,0.1°,中国大陆,包括SPI SPEI EDDI PDSI SC-PDSI VPD,nc格式,数据可以通过下方链接获取。

复制代码
https://figshare.com/articles/dataset/CHM_Drought/25656951/2
相关推荐
sensen_kiss6 小时前
INT303 Coursework2 贷款批准预测模型(对整个大数据知识的应用)
大数据·机器学习·数据分析
keke.shengfengpolang12 小时前
2026大专计算机生存指南:与其卷代码,不如用“数据思维”换赛道
数据分析
babe小鑫14 小时前
大专工业大数据应用专业学习数据分析的价值分析
大数据·学习·数据分析
Highcharts.js15 小时前
Highcharts旭日图(Sunburst)完全指南:从树形数据结构到多层圆环可视化
信息可视化·数据挖掘·数据分析
YangYang9YangYan18 小时前
2026中专计算机专业学数据分析的技术价值分析
数据挖掘·数据分析
ygw_20 小时前
餐厅订单数据分析
数据挖掘·数据分析
-To be number.wan1 天前
Python数据分析:SciPy科学计算
python·学习·数据分析
-To be number.wan1 天前
用 Pandas 分析自行车租赁数据:从时间序列到天气影响的完整实训
python·数据分析·pandas·数据可视化
hhzz2 天前
使用Python对MySQL进行数据分析
python·mysql·数据分析
workflower2 天前
业务需求场景
数据分析·测试用例·需求分析·软件需求