1961-2022年中国大陆多干旱指数数据集(SPI/SPEI/EDDI/PDSI/SC-PDSI/VPD)

DOI: 10.5194/essd-2024-270

干旱指数对于评估和管理缺水和农业风险至关重要;然而,现有数据集中缺乏统一的数据基础,导致不一致,对干旱指数的可比性提出了挑战。本研究致力于创建CHM_Drought,这是一个创新且全面的长期气象干旱数据集,空间分辨率为0.1°,数据收集时间为1961-2022年,中国大陆年。它具有6个关键的气象干旱指数:标准化降水指数(SPI)、标准化降水蒸散指数(SPEI)、蒸发需求干旱指数(EDDI)、帕尔默干旱严重程度指数(PDSI)、自校准帕尔默干旱严重程度指数(SC-PDSI)和蒸气压赤字(VPD),其中SPI、SPEI和EDDI包含2周和1-12个月的多尺度特征。该数据集具有高密度气象站数据的综合应用和从基本气象要素出发的完整框架(中国水文气象数据集,CHM)。该数据集在准确捕捉中国大陆干旱事件方面表现出色,其对2022年长江流域夏季干旱的详细描述就证明了这一点。此外,为了评估CHM_Drought,本文利用气候研究单元(CRU)和CN05.1数据计算的干旱指数进行了一致性检验,发现所有指数总体上具有较高的一致性,且2周尺度SPI、SPEI和EDDI在干旱监测中具有潜在的预警作用。总体而言,我们的数据集弥补了中国在高精度多指标干旱数据方面的差距,完整的基于CHM的框架保证了数据集的一致性和可靠性,有助于提高对中国干旱模式和趋势的理解。

1961-2022年,0.1°,中国大陆,包括SPI SPEI EDDI PDSI SC-PDSI VPD,nc格式,数据可以通过下方链接获取。

复制代码
https://figshare.com/articles/dataset/CHM_Drought/25656951/2
相关推荐
语落心生1 天前
大宗供应链企业舆情指标系统设计(一)舆情指标设计
数据分析
语落心生1 天前
餐饮供应链的数仓设计思考 (五) 系统稳定性与SLA保障体系
数据分析
语落心生1 天前
餐饮供应链的数仓设计思考 (四) 餐饮连锁企业数据模型可解释性
数据分析
语落心生1 天前
餐饮供应链的数仓设计思考 (三) 数据管道与核心系统API对接方案
数据分析
语落心生1 天前
餐饮供应链的数仓设计思考 (二) 餐饮连锁企业深度业务模型分析
数据分析
语落心生1 天前
餐饮供应链的数仓设计思考 (一) 系统设计大纲
数据分析
用户41429296072391 天前
批量商品信息采集工具获取商品详情的完整方案
爬虫·数据挖掘·数据分析
用户41429296072391 天前
淘宝实时商品API接口:采集竞品商品详情页的价格、SKU 规格、库存数量、卖点文案、图文内容、售后政策(运费、退换货规则)、评价核心标签
数据挖掘·数据分析·数据可视化
f***a3461 天前
node.js+npm的环境配置以及添加镜像(保姆级教程)
arcgis·npm·node.js
江上月5132 天前
Pandas 高级教程:解锁数据分析的强大潜能
数据挖掘·数据分析·pandas