1961-2022年中国大陆多干旱指数数据集(SPI/SPEI/EDDI/PDSI/SC-PDSI/VPD)

DOI: 10.5194/essd-2024-270

干旱指数对于评估和管理缺水和农业风险至关重要;然而,现有数据集中缺乏统一的数据基础,导致不一致,对干旱指数的可比性提出了挑战。本研究致力于创建CHM_Drought,这是一个创新且全面的长期气象干旱数据集,空间分辨率为0.1°,数据收集时间为1961-2022年,中国大陆年。它具有6个关键的气象干旱指数:标准化降水指数(SPI)、标准化降水蒸散指数(SPEI)、蒸发需求干旱指数(EDDI)、帕尔默干旱严重程度指数(PDSI)、自校准帕尔默干旱严重程度指数(SC-PDSI)和蒸气压赤字(VPD),其中SPI、SPEI和EDDI包含2周和1-12个月的多尺度特征。该数据集具有高密度气象站数据的综合应用和从基本气象要素出发的完整框架(中国水文气象数据集,CHM)。该数据集在准确捕捉中国大陆干旱事件方面表现出色,其对2022年长江流域夏季干旱的详细描述就证明了这一点。此外,为了评估CHM_Drought,本文利用气候研究单元(CRU)和CN05.1数据计算的干旱指数进行了一致性检验,发现所有指数总体上具有较高的一致性,且2周尺度SPI、SPEI和EDDI在干旱监测中具有潜在的预警作用。总体而言,我们的数据集弥补了中国在高精度多指标干旱数据方面的差距,完整的基于CHM的框架保证了数据集的一致性和可靠性,有助于提高对中国干旱模式和趋势的理解。

1961-2022年,0.1°,中国大陆,包括SPI SPEI EDDI PDSI SC-PDSI VPD,nc格式,数据可以通过下方链接获取。

复制代码
https://figshare.com/articles/dataset/CHM_Drought/25656951/2
相关推荐
babe小鑫1 天前
中专学历转行招聘数据分析的可行性分析
数据挖掘·数据分析
智航GIS1 天前
11.13 Pandas进阶:掌握多级分组与高级聚合,解锁数据分析新维度
数据挖掘·数据分析·pandas
YangYang9YangYan1 天前
2026高职大数据与会计专业学数据分析的价值分析
大数据·数据挖掘·数据分析
UR的出不克1 天前
Python实现SMZDM数据处理系统:从爬虫到数据分析的完整实践
爬虫·python·数据分析
瑞华丽PLM1 天前
工业大数据背景下的PLM数据分析:驱动产品创新新范式
大数据·数据挖掘·数据分析·plm·国产plm·瑞华丽plm·瑞华丽
一直都在5721 天前
Vue3的快速搭建
arcgis
大闲在人2 天前
22. EOQ 扩展模型:有限生产率场景下的库存优化
数据分析·供应链管理·智能制造·库存管理·工业工程
YangYang9YangYan2 天前
2026大专财务专业学数据分析的价值分析
数据挖掘·数据分析
英英_2 天前
如何在MATLAB中进行数据可视化
matlab·信息可视化·数据分析
GIS思维2 天前
ArcGIS导出透明背景地图的设置方法!
arcgis·土地利用现状图