1961-2022年中国大陆多干旱指数数据集(SPI/SPEI/EDDI/PDSI/SC-PDSI/VPD)

DOI: 10.5194/essd-2024-270

干旱指数对于评估和管理缺水和农业风险至关重要;然而,现有数据集中缺乏统一的数据基础,导致不一致,对干旱指数的可比性提出了挑战。本研究致力于创建CHM_Drought,这是一个创新且全面的长期气象干旱数据集,空间分辨率为0.1°,数据收集时间为1961-2022年,中国大陆年。它具有6个关键的气象干旱指数:标准化降水指数(SPI)、标准化降水蒸散指数(SPEI)、蒸发需求干旱指数(EDDI)、帕尔默干旱严重程度指数(PDSI)、自校准帕尔默干旱严重程度指数(SC-PDSI)和蒸气压赤字(VPD),其中SPI、SPEI和EDDI包含2周和1-12个月的多尺度特征。该数据集具有高密度气象站数据的综合应用和从基本气象要素出发的完整框架(中国水文气象数据集,CHM)。该数据集在准确捕捉中国大陆干旱事件方面表现出色,其对2022年长江流域夏季干旱的详细描述就证明了这一点。此外,为了评估CHM_Drought,本文利用气候研究单元(CRU)和CN05.1数据计算的干旱指数进行了一致性检验,发现所有指数总体上具有较高的一致性,且2周尺度SPI、SPEI和EDDI在干旱监测中具有潜在的预警作用。总体而言,我们的数据集弥补了中国在高精度多指标干旱数据方面的差距,完整的基于CHM的框架保证了数据集的一致性和可靠性,有助于提高对中国干旱模式和趋势的理解。

1961-2022年,0.1°,中国大陆,包括SPI SPEI EDDI PDSI SC-PDSI VPD,nc格式,数据可以通过下方链接获取。

复制代码
https://figshare.com/articles/dataset/CHM_Drought/25656951/2
相关推荐
B站计算机毕业设计超人13 小时前
计算机毕业设计Python+大模型音乐推荐系统 音乐数据分析 音乐可视化 音乐爬虫 知识图谱 大数据毕业设计
人工智能·hadoop·爬虫·python·数据分析·知识图谱·课程设计
德昂信息dataondemand13 小时前
销售分析中的痛点与解决之道
大数据·数据分析
weixin_4624462316 小时前
Python 解析 Excel 图表(Chart)信息实战:从 xlsx 中提取标题、字体和数据
python·数据分析·excel·报表自动化
反向跟单策略17 小时前
如何正确看待期货反向跟单策略?
大数据·人工智能·学习·数据分析·区块链
徐先生 @_@|||18 小时前
数据分析体系全览导图综述
大数据·hadoop·分布式·数据分析
q_354888515318 小时前
机器学习:Python地铁人流量数据分析与预测系统 基于python地铁数据分析系统+可视化 时间序列预测算法 ✅
大数据·人工智能·python·算法·机器学习·信息可视化·数据分析
rgb2gray18 小时前
AI 的“诚实”指南:一文详解 Conformal Prediction (共形预测) 与 Split Conformal
人工智能·python·机器学习·数据分析·可解释·共性预测·一致性预测
GIS萬事通19 小时前
基于arcgis制作深度学习标签并基于python自动化预处理样本
python·深度学习·arcgis·边缘计算
叫我:松哥20 小时前
基于YOLO深度学习算法的人群密集监测与统计分析预警系统,实现人群密集度的实时监测、智能分析和预警功能,支持图片和视频流两种输入方式
人工智能·深度学习·算法·yolo·机器学习·数据分析·flask
AIFQuant1 天前
2026 全球股市实时行情数据 API 对比指南
python·websocket·金融·数据分析·restful