【NLP高频面题 - 分布式训练篇】PS架构是如何进行梯度同步和更新的?

【NLP高频面题 - 分布式训练篇】PS架构是如何进行梯度同步和更新的?

重要性:★★

参数服务器(Parameter Server,PS)架构的分布式训练系统中有两种服务器角色:训练服务器参数服务器。参数服务器需要提供充足内存资源和通信资源,训练服务器需要提供大量的计算资源。

参数服务器模式示例:

假设有一个可分为两个参数分区的模型,每个分区由一个参数服务器负责进行参数同步。在训练过程中,每个训练服务器都拥有完整的模型,并根据将分配到此服务器的训练数据集切片(Dataset Shard)进行计算,将得的梯度推送到相应的参数服务器。参数服务器会等待两个训练服务器都完成梯度推送,然后开始计算平均梯度,并更新参数。之后,参数服务器会通知训练服务器拉取最新的参数,并开始下一轮训练迭代。

参数服务器架构分布式训练过程可以细分为同步训练和异步训练两种模式:

  • 同步训练:训练服务器在完成一个小批次的训练后,将梯度推送给参数服务器。参数服务器在接收到所有训练服务器的梯度后,进行梯度聚合和参数更新。
  • 异步训练:训练服务器在完成一个小批次的训练后,将梯度推送给参数服务器。但是参数服务器不再等待接收所有训练服务器的梯度,而是直接基于已接收到的梯度进行参数更新。

NLP 大模型高频面题汇总

NLP基础篇
【NLP 面试宝典 之 模型分类】 必须要会的高频面题
【NLP 面试宝典 之 神经网络】 必须要会的高频面题
【NLP 面试宝典 之 主动学习】 必须要会的高频面题
【NLP 面试宝典 之 超参数优化】 必须要会的高频面题
【NLP 面试宝典 之 正则化】 必须要会的高频面题
【NLP 面试宝典 之 过拟合】 必须要会的高频面题
【NLP 面试宝典 之 Dropout】 必须要会的高频面题
【NLP 面试宝典 之 EarlyStopping】 必须要会的高频面题
【NLP 面试宝典 之 标签平滑】 必须要会的高频面题
【NLP 面试宝典 之 Warm up 】 必须要会的高频面题
【NLP 面试宝典 之 置信学习】 必须要会的高频面题
【NLP 面试宝典 之 伪标签】 必须要会的高频面题
【NLP 面试宝典 之 类别不均衡问题】 必须要会的高频面题
【NLP 面试宝典 之 交叉验证】 必须要会的高频面题
【NLP 面试宝典 之 词嵌入】 必须要会的高频面题
【NLP 面试宝典 之 One-Hot】 必须要会的高频面题
...
BERT 模型面
【NLP 面试宝典 之 BERT模型】 必须要会的高频面题
【NLP 面试宝典 之 BERT变体】 必须要会的高频面题
【NLP 面试宝典 之 BERT应用】 必须要会的高频面题
...
LLMs 微调面
【NLP 面试宝典 之 LoRA微调】 必须要会的高频面题
【NLP 面试宝典 之 Prompt】 必须要会的高频面题
【NLP 面试宝典 之 提示学习微调】 必须要会的高频面题
【NLP 面试宝典 之 PEFT微调】 必须要会的高频面题
【NLP 面试宝典 之 Chain-of-Thought微调】 必须要会的高频面题
...
相关推荐
不会学习的小白O^O3 小时前
双通道深度学习框架可实现从无人机激光雷达点云中提取橡胶树冠
人工智能·深度学习·无人机
Coovally AI模型快速验证6 小时前
OmniNWM:突破自动驾驶世界模型三大瓶颈,全景多模态仿真新标杆(附代码地址)
人工智能·深度学习·机器学习·计算机视觉·自动驾驶·transformer
青春不败 177-3266-05206 小时前
GPT、DeepSeek等大语言模型应用
人工智能·gpt·深度学习·机器学习·语言模型·科研绘图
渡我白衣7 小时前
C++ 同名全局变量:当符号在链接器中“相遇”
开发语言·c++·人工智能·深度学习·microsoft·语言模型·人机交互
java1234_小锋8 小时前
PyTorch2 Python深度学习 - PyTorch2安装与环境配置
开发语言·python·深度学习·pytorch2
CClaris8 小时前
深度学习——反向传播的本质
人工智能·python·深度学习
哲此一生9849 小时前
YOLO11追踪简单应用
人工智能·pytorch·深度学习
B站计算机毕业设计之家9 小时前
计算机视觉:pyqt5+yoloV5目标检测平台 python实战 torch 目标识别 大数据项目 目标跟踪(建议收藏)✅
深度学习·qt·opencv·yolo·目标检测·计算机视觉·1024程序员节
电棍23310 小时前
pytorch若干重要函数与重要理论的学习和实践
pytorch·深度学习·transformer
番茄寿司11 小时前
基于LSTM的多变量时间序列预测创新路径
论文阅读·深度学习·计算机网络·机器学习·lstm