补充之前的一篇 MySQL 的索引为什么能加快查询速度

在之前的一篇文章中写了 MySQL 的索引为什么能加快查询速度,结合这两篇文章,相信你会对 MySQL 的索引有更深一步的了解

​首先我们要理解一件事,无论什么数据库,它的数据一定都是存储在硬盘中的,而硬盘和内存之间的读写速度差距是非常大的 所以查询性能的瓶颈不再 CPU ,而是取决于内存和磁盘的读写速度

然后让我们回忆一下,在数据结构中如果我们想将一个查询的性能提高为log ,我们可以启用二叉树,那么如果我们应用三叉树,查询性能是不是可以提高到log3,要是多叉树,性能是不是会进一步提升

由此,就演化出了多叉树做索引这种方式,也就是大家所说的B树,传统的B树数据和索引存放在一起,一次性读进内存的数据量有限,这种方式虽然加快了数据的检索方式,但是仍然有改进空间 于是B+树横空出世

B+ 树是MySQL InnoDB 存储引擎下默认的索引数据结构,它的非叶子结点只存索引,叶子结点存储索引和数据,而叶子结点通常就是数据在硬盘中的位置,因此在进行索引检索的时候,多叉树会以非常高的效率在内存中去检索索引的所在位置,根据索引记录的地址去磁盘中检索想要的数据,这种方式就大大加快了数据的查询速度

总结:

  1. 数据存储在磁盘上,而磁盘查询的速度很慢

  2. 提高磁盘的查询速度主要通过减少 I/O 次数和增加单次磁盘 I/O 的数据有效量

  3. 索引通过多阶来减少 I/O 次数

  4. B+ 树通过将索引和业务数据分离的方式来提高单次 I/O 的数据有效量 从而减少 I/O 次数

  5. 索引通过树数据的有序性来缩小查询范围

  6. 索引本身是表中的单个字段或是多个字段,数据量本身要比整个一条记录少的多,这样,即使通过扫描的方式查询索引也比查询数据库快

相关推荐
それども14 分钟前
insertOnDuplicateKey 和 upsert 区别
数据库·mysql
大学生资源网36 分钟前
基于springboot的万亩助农网站的设计与实现源代码(源码+文档)
java·spring boot·后端·mysql·毕业设计·源码
q_19132846951 小时前
基于SpringBoot2+Vue2的诗词文化传播平台
vue.js·spring boot·mysql·程序员·计算机毕业设计
为什么不问问神奇的海螺呢丶1 小时前
服务器巡检报告-基于categraf 采集数据-存入Prometheus-写入mysql后生成报告
服务器·mysql·prometheus
秋氘渔2 小时前
智演沙盘 —— 基于大模型的智能面试评估系统
python·mysql·django·drf
计算机毕设指导63 小时前
基于微信小程序的鸟博士系统【源码文末联系】
java·spring boot·mysql·微信小程序·小程序·tomcat·maven
断春风3 小时前
如何避免 MySQL 死锁?——从原理到实战的系统性解决方案
数据库·mysql
玉成2263 小时前
MySQL两表之间数据迁移由于字段排序规则设置的不一样导致失败
数据库·mysql
sinat_363954234 小时前
canal-deployer1.1.8 + mysql + rabbitmq消息队列
mysql·rabbitmq
Evan芙4 小时前
mysql二进制部署以及多实例部署
android·数据库·mysql