3D滤波器处理遥感tif图像

python 复制代码
import cv2
import numpy as np
from osgeo import gdal

# 定义 Gabor 滤波器的参数
kSize = 31  # 滤波器核的大小
g_sigma = 3.0  # 高斯包络的标准差
g_theta = np.pi / 4  # Gabor 函数的方向
g_lambda = 10.0  # 正弦波的波长
g_gamma = 0.5  # 空间纵横比
g_psi = np.pi / 2  # 相位偏移

# 生成 Gabor 滤波器核
kernel = cv2.getGaborKernel((kSize, kSize), g_sigma, g_theta, g_lambda, g_gamma, g_psi, ktype=cv2.CV_32F)

# 使用gdal读取遥感图像
dataset = gdal.Open("1.tif")
image = dataset.ReadAsArray().transpose((1, 2, 0))  # 将波段维度转置到最后

# 获取图像的波段数
num_bands = image.shape[2]

# 初始化处理后的多波段图像
filtered_image = np.zeros_like(image, dtype=np.float32)

# 遍历每个波段
for band in range(num_bands):
    # 提取当前波段
    band_image = image[:, :, band]

    # 应用 Gabor 滤波器
    filtered_band_image = cv2.filter2D(band_image, cv2.CV_32F, kernel)

    # 将处理后的波段放回结果图像中
    filtered_image[:, :, band] = filtered_band_image

# 将处理后的图像转换为合适的数据类型
filtered_image = np.clip(filtered_image, 0, 255).astype(np.uint8)

# 保存结果
driver = gdal.GetDriverByName('GTiff')
out_dataset = driver.Create('gaofen2_image.tif', dataset.RasterXSize, dataset.RasterYSize, num_bands, gdal.GDT_Byte)
out_dataset.SetProjection(dataset.GetProjection())
out_dataset.SetGeoTransform(dataset.GetGeoTransform())
for band in range(num_bands):
    out_band = out_dataset.GetRasterBand(band + 1)
    out_band.WriteArray(filtered_image[:, :, band])
out_dataset.FlushCache()

# 关闭数据集
dataset = None
out_dataset = None
相关推荐
北极象2 天前
Flutter中实现拍照识题的功能
flutter·latex·数学公式
Jason-nb6 天前
vscode + latex workshop + sumatraPDF
ide·vscode·编辑器·latex
D-A-X7 天前
vscode中latex的tex文件和pdf跳转
vscode·pdf·latex
zjoy_223320 天前
【Latex】latex公式手册大全||积分公式表示||极限表达||矩阵的各种表达
python·学习·线性代数·数学·矩阵·latex·高等数学
AuGuSt_8125 天前
【工具推荐】在线提取PDF、文档、图片、论文中的公式
latex
小草cys1 个月前
word中把latex公式快速转换为word公式
word·latex·公式转换
Vin0sen1 个月前
latex 环境配置
latex
Better Rose2 个月前
2025美赛Latex模板可直接运行!O奖自用版
数学建模·latex·template method·美赛
金创想3 个月前
latex与word优缺点对比
word·latex