大模型带我们来到了自然语言人机交互的时代
![](https://i-blog.csdnimg.cn/direct/b3cb32ff773449678d3e5abe1162ba9c.jpeg)
1、安装本地大模型进行推理
下载地址:
https://ollama.com/download
部署本地deepseek
bash
ollama run deepseek-r1:7b
2、制定Linux操作接口指令规范
需要ai推理生成的json格式:
json
[
{
"host": "10.1.1.10",
"OS": "CentOS7.9",
"user": "root",
"ssh_port": 22,
"command": "df -h"
}
]
提示词:
有如下json中的主机,请结合用户需求和OS类型给出准确的command命令替换"command"键值:
[
{
"host": "10.1.1.10",
"OS": "CentOS7.9",
"user": "root",
"ssh_port": 22,
"command": "df -h"
}
]
其他key未说明情况下为默认,请根据用户需求返回json,仅回复json文本。
在page assist中测试提示词
命令最好是使用提示词都规范下:
3、编写大模型对话工具
python
#!/usr/bin/python3
#coding: utf-8
import json
import requests
model = "llama3"
def chat(messages):
r = requests.post(
"http://localhost:11434/api/chat",
json={"model": model, "messages": messages, "stream": True},
)
r.raise_for_status()
output = ""
for line in r.iter_lines():
body = json.loads(line)
if "error" in body:
raise Exception(body["error"])
if body.get("done") is False:
message = body.get("message", "")
content = message.get("content", "")
output += content
print(content, end="", flush=True)
if body.get("done", False):
message["content"] = output
return message
def main():
messages = []
while True:
user_input = input("Enter a prompt: ")
if not user_input:
exit()
print()
messages.append({"role": "user", "content": user_input})
message = chat(messages)
messages.append(message)
print("\n\n")
if __name__ == "__main__":
main()
4、运行AI Agent查看效果
未完待续