自己动手实现一个简单的Linux AI Agent

大模型带我们来到了自然语言人机交互的时代

1、安装本地大模型进行推理

下载地址:
https://ollama.com/download

部署本地deepseek

bash 复制代码
ollama run deepseek-r1:7b

2、制定Linux操作接口指令规范

需要ai推理生成的json格式:

json 复制代码
[
    {
        "host": "10.1.1.10",
        "OS": "CentOS7.9",
        "user": "root",
        "ssh_port": 22,
        "command": "df -h"
    }
]

提示词:

复制代码
有如下json中的主机,请结合用户需求和OS类型给出准确的command命令替换"command"键值:
[
    {
        "host": "10.1.1.10",
        "OS": "CentOS7.9",
        "user": "root",
        "ssh_port": 22,
        "command": "df -h"
    }
]
其他key未说明情况下为默认,请根据用户需求返回json,仅回复json文本。

在page assist中测试提示词

命令最好是使用提示词都规范下:

3、编写大模型对话工具

python 复制代码
#!/usr/bin/python3
#coding: utf-8

import json
import requests

model = "llama3"

def chat(messages):
    r = requests.post(
        "http://localhost:11434/api/chat",
        json={"model": model, "messages": messages, "stream": True},
    )
    r.raise_for_status()
    output = ""
    for line in r.iter_lines():
        body = json.loads(line)
        if "error" in body:
            raise Exception(body["error"])
        if body.get("done") is False:
            message = body.get("message", "")
            content = message.get("content", "")
            output += content
            print(content, end="", flush=True)
        if body.get("done", False):
            message["content"] = output
            return message

def main():
    messages = []
    while True:
        user_input = input("Enter a prompt: ")
        if not user_input:
            exit()
        print()
        messages.append({"role": "user", "content": user_input})
        message = chat(messages)
        messages.append(message)
        print("\n\n")

if __name__ == "__main__":
    main()

4、运行AI Agent查看效果


未完待续

相关推荐
说私域25 分钟前
互联网生态下赢家群体的崛起与“开源AI智能名片链动2+1模式S2B2C商城小程序“的赋能效应
人工智能·小程序·开源
董厂长4 小时前
langchain :记忆组件混淆概念澄清 & 创建Conversational ReAct后显示指定 记忆组件
人工智能·深度学习·langchain·llm
G皮T7 小时前
【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
人工智能·chatgpt·llm·大语言模型·deepseek·deepseek-v3·deepseek-r1
九年义务漏网鲨鱼7 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间8 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享8 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾8 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码8 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5898 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien9 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt