自己动手实现一个简单的Linux AI Agent

大模型带我们来到了自然语言人机交互的时代

1、安装本地大模型进行推理

下载地址:
https://ollama.com/download

部署本地deepseek

bash 复制代码
ollama run deepseek-r1:7b

2、制定Linux操作接口指令规范

需要ai推理生成的json格式:

json 复制代码
[
    {
        "host": "10.1.1.10",
        "OS": "CentOS7.9",
        "user": "root",
        "ssh_port": 22,
        "command": "df -h"
    }
]

提示词:

复制代码
有如下json中的主机,请结合用户需求和OS类型给出准确的command命令替换"command"键值:
[
    {
        "host": "10.1.1.10",
        "OS": "CentOS7.9",
        "user": "root",
        "ssh_port": 22,
        "command": "df -h"
    }
]
其他key未说明情况下为默认,请根据用户需求返回json,仅回复json文本。

在page assist中测试提示词

命令最好是使用提示词都规范下:

3、编写大模型对话工具

python 复制代码
#!/usr/bin/python3
#coding: utf-8

import json
import requests

model = "llama3"

def chat(messages):
    r = requests.post(
        "http://localhost:11434/api/chat",
        json={"model": model, "messages": messages, "stream": True},
    )
    r.raise_for_status()
    output = ""
    for line in r.iter_lines():
        body = json.loads(line)
        if "error" in body:
            raise Exception(body["error"])
        if body.get("done") is False:
            message = body.get("message", "")
            content = message.get("content", "")
            output += content
            print(content, end="", flush=True)
        if body.get("done", False):
            message["content"] = output
            return message

def main():
    messages = []
    while True:
        user_input = input("Enter a prompt: ")
        if not user_input:
            exit()
        print()
        messages.append({"role": "user", "content": user_input})
        message = chat(messages)
        messages.append(message)
        print("\n\n")

if __name__ == "__main__":
    main()

4、运行AI Agent查看效果


未完待续

相关推荐
亚马逊云开发者4 小时前
Q CLI 助力合合信息实现 Aurora 的升级运营
人工智能
全栈胖叔叔-瓜州5 小时前
关于llamasharp 大模型多轮对话,模型对话无法终止,或者输出角色标识User:,或者System等角色标识问题。
前端·人工智能
坚果派·白晓明5 小时前
AI驱动的命令行工具集x-cmd鸿蒙化适配后通过DevBox安装使用
人工智能·华为·harmonyos
GISer_Jing5 小时前
前端营销技术实战:数据+AI实战指南
前端·javascript·人工智能
Dekesas96956 小时前
【深度学习】基于Faster R-CNN的黄瓜幼苗智能识别与定位系统,农业AI新突破
人工智能·深度学习·r语言
大佐不会说日语~6 小时前
Spring AI Alibaba 的 ChatClient 工具注册与 Function Calling 实践
人工智能·spring boot·python·spring·封装·spring ai
CeshirenTester6 小时前
Playwright元素定位详解:8种定位策略实战指南
人工智能·功能测试·程序人生·单元测试·自动化
世岩清上7 小时前
AI驱动的智能运维:从自动化到自主化的技术演进与架构革新
运维·人工智能·自动化
K2_BPM7 小时前
告别“单点智能”:AI Agent如何重构企业生产力与流程?
人工智能
TMT星球7 小时前
深业云从人工智能产业投资基金设立,聚焦AI和具身智能相关产业
人工智能