自己动手实现一个简单的Linux AI Agent

大模型带我们来到了自然语言人机交互的时代

1、安装本地大模型进行推理

下载地址:
https://ollama.com/download

部署本地deepseek

bash 复制代码
ollama run deepseek-r1:7b

2、制定Linux操作接口指令规范

需要ai推理生成的json格式:

json 复制代码
[
    {
        "host": "10.1.1.10",
        "OS": "CentOS7.9",
        "user": "root",
        "ssh_port": 22,
        "command": "df -h"
    }
]

提示词:

复制代码
有如下json中的主机,请结合用户需求和OS类型给出准确的command命令替换"command"键值:
[
    {
        "host": "10.1.1.10",
        "OS": "CentOS7.9",
        "user": "root",
        "ssh_port": 22,
        "command": "df -h"
    }
]
其他key未说明情况下为默认,请根据用户需求返回json,仅回复json文本。

在page assist中测试提示词

命令最好是使用提示词都规范下:

3、编写大模型对话工具

python 复制代码
#!/usr/bin/python3
#coding: utf-8

import json
import requests

model = "llama3"

def chat(messages):
    r = requests.post(
        "http://localhost:11434/api/chat",
        json={"model": model, "messages": messages, "stream": True},
    )
    r.raise_for_status()
    output = ""
    for line in r.iter_lines():
        body = json.loads(line)
        if "error" in body:
            raise Exception(body["error"])
        if body.get("done") is False:
            message = body.get("message", "")
            content = message.get("content", "")
            output += content
            print(content, end="", flush=True)
        if body.get("done", False):
            message["content"] = output
            return message

def main():
    messages = []
    while True:
        user_input = input("Enter a prompt: ")
        if not user_input:
            exit()
        print()
        messages.append({"role": "user", "content": user_input})
        message = chat(messages)
        messages.append(message)
        print("\n\n")

if __name__ == "__main__":
    main()

4、运行AI Agent查看效果


未完待续

相关推荐
晚烛3 分钟前
CANN + 物理信息神经网络(PINNs):求解偏微分方程的新范式
javascript·人工智能·flutter·html·零售
爱吃烤鸡翅的酸菜鱼4 分钟前
CANN ops-math向量运算与特殊函数实现解析
人工智能·aigc
波动几何15 分钟前
OpenClaw 构建指南:打造智能多工具编排运行时框架
人工智能
程序猿追16 分钟前
深度解码AI之魂:CANN Compiler 核心架构与技术演进
人工智能·架构
新缸中之脑18 分钟前
Figma Make 提示工程
人工智能·figma
赫尔·普莱蒂科萨·帕塔18 分钟前
智能体工程
人工智能·机器人·软件工程·agi
觉醒大王21 分钟前
AI写的青基中了
人工智能·笔记·深度学习·学习·职场和发展·学习方法
深鱼~22 分钟前
深度剖析ops-transformer:LayerNorm与GEMM的融合优化
人工智能·深度学习·transformer
哈__25 分钟前
CANN图优化技术:深度学习模型的编译器魔法
人工智能·深度学习
灰灰勇闯IT26 分钟前
神经网络的基石——深度解析 CANN ops-nn 算子库如何赋能昇腾 AI
人工智能·深度学习·神经网络