语言大模型基础概念 一(先了解听说过的名词都是什么)

SFT(监督微调)和RLHF(基于人类反馈的强化学习)的区别

STF(Supervised Fine-Tuning)和RLHF(Reinforcement Learning from Human Feedback)是两种不同的模型训练方法,分别用于不同的阶段和目的。具体介绍参考SFT(监督微调)和RLHF(基于人类反馈的强化学习)的区别_sft和rlhf-CSDN博客

LoRA(Low-Rank Adaptation)

Lora(Low-Rank Adaptation)是一种新的模型微调技术。在预训练好的模型中引入并行的低秩矩阵,用于修正预训练模型的输出(有点像ResNet,增加新的参数用来生成预训练模型的残差)。具体介绍参考理解Lora微调只需一个公式-CSDN博客

语言大模型主体架构

参考

Decoder-Only、Encoder-Only、Encoder-Decoder 区别_decoder only-CSDN博客语言大模型知识点简介_prefix decoder-CSDN博客

  1. Decoder-Only 架构

描述: 仅包含解码器部分,没有编码器

应用: 通常用于生成任务 ,如语言模型和对话系统。

代表模型: GPT(Generative Pre-trained Transformer)

其他: prefix Decoder (输入为之前所有的输出,)和 causal Decoder(输入为上一时刻的输出,)。

  1. Encoder-Only 架构

描述: 仅包含编码器部分,没有解码器。

应用: 通常用于理解任务 ,如文本分类和情感分析。

代表模型: BERT(Bidirectional Encoder Representations from Transformers)

  1. Encoder-Decoder 架构

描述: 同时包含编码器和解码器部分。

应用: 通常用于序列到序列(seq2seq)任务 ,如机器翻译和文本摘要。

代表模型: Transformer、T5

相关推荐
Ronin-Lotus4 小时前
深度学习篇---剪裁&缩放
图像处理·人工智能·缩放·剪裁
cpsvps5 小时前
3D芯片香港集成:技术突破与产业机遇全景分析
人工智能·3d
国科安芯5 小时前
抗辐照芯片在低轨卫星星座CAN总线通讯及供电系统的应用探讨
运维·网络·人工智能·单片机·自动化
AKAMAI5 小时前
利用DataStream和TrafficPeak实现大数据可观察性
人工智能·云原生·云计算
Ai墨芯1116 小时前
深度学习水论文:特征提取
人工智能·深度学习
无名工程师6 小时前
神经网络知识讨论
人工智能·神经网络
nbsaas-boot6 小时前
AI时代,我们更需要自己的开发方式与平台
人工智能
SHIPKING3936 小时前
【机器学习&深度学习】LLamaFactory微调效果与vllm部署效果不一致如何解决
人工智能·深度学习·机器学习
jonyleek7 小时前
如何搭建一套安全的,企业级本地AI专属知识库系统?从安装系统到构建知识体系,全流程!
人工智能·安全
MQ_SOFTWARE8 小时前
AI驱动的金融推理:Fin-R1模型如何重塑行业决策逻辑
人工智能·金融