语言大模型基础概念 一(先了解听说过的名词都是什么)

SFT(监督微调)和RLHF(基于人类反馈的强化学习)的区别

STF(Supervised Fine-Tuning)和RLHF(Reinforcement Learning from Human Feedback)是两种不同的模型训练方法,分别用于不同的阶段和目的。具体介绍参考SFT(监督微调)和RLHF(基于人类反馈的强化学习)的区别_sft和rlhf-CSDN博客

LoRA(Low-Rank Adaptation)

Lora(Low-Rank Adaptation)是一种新的模型微调技术。在预训练好的模型中引入并行的低秩矩阵,用于修正预训练模型的输出(有点像ResNet,增加新的参数用来生成预训练模型的残差)。具体介绍参考理解Lora微调只需一个公式-CSDN博客

语言大模型主体架构

参考

Decoder-Only、Encoder-Only、Encoder-Decoder 区别_decoder only-CSDN博客语言大模型知识点简介_prefix decoder-CSDN博客

  1. Decoder-Only 架构

描述: 仅包含解码器部分,没有编码器

应用: 通常用于生成任务 ,如语言模型和对话系统。

代表模型: GPT(Generative Pre-trained Transformer)

其他: prefix Decoder (输入为之前所有的输出,)和 causal Decoder(输入为上一时刻的输出,)。

  1. Encoder-Only 架构

描述: 仅包含编码器部分,没有解码器。

应用: 通常用于理解任务 ,如文本分类和情感分析。

代表模型: BERT(Bidirectional Encoder Representations from Transformers)

  1. Encoder-Decoder 架构

描述: 同时包含编码器和解码器部分。

应用: 通常用于序列到序列(seq2seq)任务 ,如机器翻译和文本摘要。

代表模型: Transformer、T5

相关推荐
深蓝易网几秒前
为什么制造企业需要用MES管理系统升级改造车间
大数据·运维·人工智能·制造·devops
xiangzhihong88 分钟前
Amodal3R ,南洋理工推出的 3D 生成模型
人工智能·深度学习·计算机视觉
狂奔solar22 分钟前
diffusion-vas 提升遮挡区域的分割精度
人工智能·深度学习
资源大全免费分享35 分钟前
MacOS 的 AI Agent 新星,本地沙盒驱动,解锁 macOS 操作新体验!
人工智能·macos·策略模式
跳跳糖炒酸奶1 小时前
第四章、Isaacsim在GUI中构建机器人(2):组装一个简单的机器人
人工智能·python·算法·ubuntu·机器人
AI.NET 极客圈1 小时前
AI与.NET技术实操系列(四):使用 Semantic Kernel 和 DeepSeek 构建AI应用
人工智能·.net
Debroon1 小时前
应华为 AI 医疗军团之战,各方动态和反应
人工智能·华为
俊哥V1 小时前
阿里通义千问发布全模态开源大模型Qwen2.5-Omni-7B
人工智能·ai
果冻人工智能1 小时前
每一条广告都只为你而生: 用 人工智能 颠覆广告行业的下一步
人工智能
掘金安东尼1 小时前
GPT-4.5 被 73% 的人误认为人类,“坏了?!我成替身了!”
人工智能·程序员