sales表的redistribute是怎么实现的?给出实现的细节

In Greenplum, the redistribution of the sales table based on the cust_id column involves several steps to ensure that the data is efficiently moved and processed across the segments. Here's a detailed breakdown of how this redistribution is implemented:

Redistribution Process

  1. Query Parsing and Planning:

    • The query dispatcher (QD) on the master node parses the query and generates the query plan. This plan includes the redistribution step necessary to join the sales and customer tables.
  2. Redistribute Motion Operator:

    • The query plan includes a Redistribute Motion operator. This operator is responsible for redistributing the sales table across the segments based on the cust_id column.
  3. Data Redistribution:

    • Each segment reads its local portion of the sales table.

    • The Redistribute Motion operator redistributes the rows of the sales table to other segments based on the hash value of the cust_id column. This ensures that rows with the same cust_id are sent to the same segment.

  4. Execution of Redistribute Motion:

    • The redistribution process involves the following steps:

      • Hash Calculation : Each segment calculates the hash value of the cust_id for each row in the sales table.

      • Data Transfer: Rows are sent to the appropriate segments based on the calculated hash values. This is done in parallel across all segments to maximize efficiency.

  5. Local Join Execution:

    • After redistribution, each segment performs a local join between the redistributed sales data and its local customer data. This ensures that the join operation is performed efficiently without the need for further data movement.

Example Query Plan

Here's an example of what the query plan might look like for the given query:

复制代码
Gather Motion 4:1  (slice1; segments: 4)
  ->  Hash Join
        Hash Cond: (s.cust_id = c.cust_id)
        ->  Redistribute Motion 4:4  (slice2; segments: 4)
            Hash Key: s.cust_id
            ->  Seq Scan on sales s
        ->  Seq Scan on customer c

Detailed Steps in Redistribution

  1. Initial Scan:

    • Each segment performs a sequential scan on its local portion of the sales table.
  2. Redistribution:

    • The Redistribute Motion operator redistributes the rows of the sales table across all segments based on the cust_id column. This involves:

      • Calculating the hash value of cust_id.

      • Sending rows to the appropriate segments based on the hash value.

  3. Local Join:

    • After redistribution, each segment performs a local join between the redistributed sales data and its local customer data.
  4. Gathering Results:

    • The results from each segment are gathered back to the master node using a Gather Motion operator. The master node combines the results from all segments to produce the final query result.

Conclusion

The redistribution of the sales table in Greenplum is a critical step in ensuring efficient join operations across distributed data. By redistributing data based on the join key (cust_id), Greenplum leverages its MPP architecture to perform local joins on each segment, thereby maximizing parallel processing and minimizing data movement.

相关推荐
施嘉伟2 小时前
Oracle 11g RAC ASM磁盘组剔盘、加盘实施过程
数据库·oracle
橘猫云计算机设计3 小时前
springboot基于hadoop的酷狗音乐爬虫大数据分析可视化系统(源码+lw+部署文档+讲解),源码可白嫖!
数据库·hadoop·spring boot·爬虫·python·数据分析·毕业设计
卓怡学长4 小时前
w304基于HTML5的民谣网站的设计与实现
java·前端·数据库·spring boot·spring·html5
冰^4 小时前
MySQL VS SQL Server:优缺点全解析
数据库·数据仓库·redis·sql·mysql·json·数据库开发
电商数据girl4 小时前
产品经理对于电商接口的梳理||电商接口文档梳理与接入
大数据·数据库·python·自动化·产品经理
Spring小子5 小时前
黑马点评商户查询缓存--缓存更新策略
java·数据库·redis·后端
溜溜刘@♞6 小时前
数据库之mysql优化
数据库·mysql
uwvwko7 小时前
ctfhow——web入门214~218(时间盲注开始)
前端·数据库·mysql·ctf
柯3497 小时前
Redis的过期删除策略和内存淘汰策略
数据库·redis·lfu·lru
Tiger_shl7 小时前
【Python语言基础】24、并发编程
java·数据库·python