sales表的redistribute是怎么实现的?给出实现的细节

In Greenplum, the redistribution of the sales table based on the cust_id column involves several steps to ensure that the data is efficiently moved and processed across the segments. Here's a detailed breakdown of how this redistribution is implemented:

Redistribution Process

  1. Query Parsing and Planning:

    • The query dispatcher (QD) on the master node parses the query and generates the query plan. This plan includes the redistribution step necessary to join the sales and customer tables.
  2. Redistribute Motion Operator:

    • The query plan includes a Redistribute Motion operator. This operator is responsible for redistributing the sales table across the segments based on the cust_id column.
  3. Data Redistribution:

    • Each segment reads its local portion of the sales table.

    • The Redistribute Motion operator redistributes the rows of the sales table to other segments based on the hash value of the cust_id column. This ensures that rows with the same cust_id are sent to the same segment.

  4. Execution of Redistribute Motion:

    • The redistribution process involves the following steps:

      • Hash Calculation : Each segment calculates the hash value of the cust_id for each row in the sales table.

      • Data Transfer: Rows are sent to the appropriate segments based on the calculated hash values. This is done in parallel across all segments to maximize efficiency.

  5. Local Join Execution:

    • After redistribution, each segment performs a local join between the redistributed sales data and its local customer data. This ensures that the join operation is performed efficiently without the need for further data movement.

Example Query Plan

Here's an example of what the query plan might look like for the given query:

复制代码
Gather Motion 4:1  (slice1; segments: 4)
  ->  Hash Join
        Hash Cond: (s.cust_id = c.cust_id)
        ->  Redistribute Motion 4:4  (slice2; segments: 4)
            Hash Key: s.cust_id
            ->  Seq Scan on sales s
        ->  Seq Scan on customer c

Detailed Steps in Redistribution

  1. Initial Scan:

    • Each segment performs a sequential scan on its local portion of the sales table.
  2. Redistribution:

    • The Redistribute Motion operator redistributes the rows of the sales table across all segments based on the cust_id column. This involves:

      • Calculating the hash value of cust_id.

      • Sending rows to the appropriate segments based on the hash value.

  3. Local Join:

    • After redistribution, each segment performs a local join between the redistributed sales data and its local customer data.
  4. Gathering Results:

    • The results from each segment are gathered back to the master node using a Gather Motion operator. The master node combines the results from all segments to produce the final query result.

Conclusion

The redistribution of the sales table in Greenplum is a critical step in ensuring efficient join operations across distributed data. By redistributing data based on the join key (cust_id), Greenplum leverages its MPP architecture to perform local joins on each segment, thereby maximizing parallel processing and minimizing data movement.

相关推荐
徐子元竟然被占了!!1 天前
Linux-systemctl
linux·数据库·oracle
YJlio1 天前
Active Directory 工具学习笔记(10.8):AdInsight——保存与导出(证据留存、共享与二次分析)
数据库·笔记·学习
suoyue_zhan1 天前
GBase的管理监控平台GEM实践指南
数据库
哈哈老师啊1 天前
Springboot学生综合测评系统hxtne(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
java·数据库·spring boot
小小8程序员1 天前
Redis-10
数据库·redis·缓存
liuzhilongDBA1 天前
从collation mismatch异常到其原理
数据库·version·glibc·postgres·collation
梁萌1 天前
MySQL数据库分库分表介绍
数据库·mysql·shardingsphere·分库分表
占疏1 天前
dify API访问工作流/聊天
开发语言·数据库·python
Cat God 0071 天前
SQL使用及注意事项
数据库·sql·mysql