文章仅供参考学习
1.LSTM预测
首先去爬取数据
这个是爬取大乐透的,从07年爬到最新一期
import requests
from bs4 import BeautifulSoup
import csv
# 目标URL
url = 'http://datachart.500.com/dlt/history/newinc/history.php?start=07001'
# 发送HTTP请求
response = requests.get(url)
response.encoding = 'utf-8' # 确保编码正确
# 解析HTML内容
soup = BeautifulSoup(response.text, 'html.parser')
# 定位包含开奖数据的表格体
tbody = soup.find('tbody', id="tdata")
# 存储开奖数据的列表
lottery_data = []
# 遍历每一行数据
for tr in tbody.find_all('tr'):
tds = tr.find_all('td')
if tds:
# 提取数据并添加到列表
lottery_data.append([td.text for td in tds])
# 写入CSV文件
with open('dlt_lottery_data.csv', 'w', newline='', encoding='utf-8') as csvfile:
writer = csv.writer(csvfile)
# 写入标题行
# writer.writerow(['期号', '号码1', '号码2', '号码3', '号码4', '号码5', '号码6', '号码7'])
# 写入数据行
writer.writerows(lottery_data)
print('数据抓取完成,并保存到dlt_lottery_data.csv文件中。')
下面是爬取双色球的
import requests
from bs4 import BeautifulSoup
import csv
# 目标URL
url = f'http://datachart.500.com/ssq/history/newinc/history.php?start=07001'
# 发送HTTP请求
response = requests.get(url)
response.encoding = 'utf-8' # 确保编码正确
# 解析HTML内容
soup = BeautifulSoup(response.text, 'html.parser')
# 定位包含开奖数据的表格体
tbody = soup.find('tbody', id="tdata")
# 存储开奖数据的列表
lottery_data = []
# 遍历每一行数据
for tr in tbody.find_all('tr'):
tds = tr.find_all('td')
if tds:
# 提取数据并添加到列表
lottery_data.append([td.text for td in tds])
# 写入CSV文件
with open('ssq_lottery_data.csv', 'w', newline='', encoding='utf-8') as csvfile:
writer = csv.writer(csvfile)
# 写入标题行
# writer.writerow(['期号', '号码1', '号码2', '号码3', '号码4', '号码5', '号码6', '号码7'])
# 写入数据行
writer.writerows(lottery_data)
print('数据抓取完成,并保存到ssq_lottery_data.csv文件中。')
对爬取的数据进行处理
大乐透是5+2,双色球是6+1,两个不同,注意区分。
大乐透的
import csv
import pandas as pd
def get_data(path):
r_data = []
b_data = []
with open(path, 'r') as file:
reader = csv.reader(file)
for row in reader:
r_data.append(list(map(lambda x: int(x), row[1:7])))
b_data.append(list(map(lambda x: int(x), row[7:8])))
r_data.reverse()
b_data.reverse()
return r_data, b_data
def process_data():
p = r"./ssq_lottery_data.csv"
r_data, b_data = get_data(p)
# print(b_data)
return r_data, b_data
if __name__ == '__main__':
process_data()
下面是双色球的
import csv
import pandas as pd
def get_data(path):
r_data = []
b_data = []
with open(path, 'r') as file:
reader = csv.reader(file)
for row in reader:
r_data.append(list(map(lambda x: int(x), row[1:7])))
b_data.append(list(map(lambda x: int(x), row[7:8])))
r_data.reverse()
b_data.reverse()
return r_data, b_data
def process_data():
p = r"./ssq_lottery_data.csv"
r_data, b_data = get_data(p)
# print(b_data)
return r_data, b_data
if __name__ == '__main__':
process_data()
下面开始定义模型
# 定义 LSTM 模型
class LSTMModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_layers=1):
super(LSTMModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
对训练之前的数据进行标准化处理和转换成为tensor格式
def trans_process_data(seq_length):
r_data, b_data = process_data()
# print(r_data)
# print(r_data)
r_data = np.array(r_data)
b_data = np.array(b_data)
# 转换为 PyTorch 张量
r_data = torch.tensor(r_data, dtype=torch.float32)
# 转换为 PyTorch 张量
b_data = torch.tensor(b_data, dtype=torch.float32)
# 标准化
r_mean = r_data.mean(dim=0)
r_std = r_data.std(dim=0)
r_data = (r_data - r_mean) / r_std
# 标准化
b_mean = b_data.mean(dim=0)
b_std = b_data.std(dim=0)
b_data = (b_data - b_mean) / b_std
r_train = []
r_target = []
b_train = []
b_target = []
for i in range(len(r_data) - seq_length):
r_train.append(r_data[i:i + seq_length])
r_target.append(r_data[i + seq_length])
r_train = torch.stack(r_train)
r_target = torch.stack(r_target)
for i in range(len(b_data) - seq_length):
b_train.append(b_data[i:i + seq_length])
b_target.append(b_data[i + seq_length])
b_train = torch.stack(b_train)
b_target = torch.stack(b_target)
# print(r_train)
return r_data, b_data, r_train, r_target, b_train, b_target, r_mean, r_std, b_mean, b_std
训练函数
def start_train(input_size, hidden_size, output_size, num_layers, train_data, target_data, num_epochs=100):
model = LSTMModel(input_size, hidden_size, output_size, num_layers)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.05)
# 训练模型
for epoch in range(num_epochs):
model.train()
optimizer.zero_grad()
# 前向传播
outputs = model(train_data)
loss = criterion(outputs, target_data)
# 反向传播和优化
loss.backward()
optimizer.step()
if (epoch + 1) % 10 == 0:
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
if epoch == int(num_epochs/2):
optimizer = optim.Adam(model.parameters(), lr=0.01)
return model
预测函数
def start_predicted(model, predicted_data):
model.eval()
with torch.no_grad():
test_input = predicted_data.unsqueeze(0) # 使用最后seq_length个时间步作为输入
predicted = model(test_input)
# print("Predicted:", predicted)
return predicted
红球和篮球分开训练预测,开始两个训练预测
def start_all_train(hidden_size, num_layers, num_epochs, seq_length):
r_data, b_data, r_train, r_target, b_train, b_target, r_mean, r_std, b_mean, b_std = trans_process_data(seq_length)
# print(r_mean, r_std)
r_size = 5
r_model = start_train(r_size, hidden_size, r_size, num_layers, r_train, r_target, num_epochs)
predicted_data = r_data[-seq_length:]
r_predicted = start_predicted(r_model, predicted_data)
print("--------------------------bbbbb-------------------------------------------")
b_size = 2
b_model = start_train(b_size, hidden_size, b_size, num_layers, b_train, b_target, num_epochs)
predicted_data = b_data[-seq_length:]
b_predicted = start_predicted(b_model, predicted_data)
print(r_predicted)
print(b_predicted)
r_predicted = r_predicted * r_std + r_mean
b_predicted = b_predicted * b_std + b_mean
print(r_predicted)
print(b_predicted)
return r_predicted, b_predicted
完整代码
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
from data_process import process_data
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
# 定义 LSTM 模型
class LSTMModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_layers=1):
super(LSTMModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
def trans_process_data(seq_length):
r_data, b_data = process_data()
# print(r_data)
# print(r_data)
r_data = np.array(r_data)
b_data = np.array(b_data)
# 转换为 PyTorch 张量
r_data = torch.tensor(r_data, dtype=torch.float32)
# 转换为 PyTorch 张量
b_data = torch.tensor(b_data, dtype=torch.float32)
# 标准化
r_mean = r_data.mean(dim=0)
r_std = r_data.std(dim=0)
r_data = (r_data - r_mean) / r_std
# 标准化
b_mean = b_data.mean(dim=0)
b_std = b_data.std(dim=0)
b_data = (b_data - b_mean) / b_std
r_train = []
r_target = []
b_train = []
b_target = []
for i in range(len(r_data) - seq_length):
r_train.append(r_data[i:i + seq_length])
r_target.append(r_data[i + seq_length])
r_train = torch.stack(r_train)
r_target = torch.stack(r_target)
for i in range(len(b_data) - seq_length):
b_train.append(b_data[i:i + seq_length])
b_target.append(b_data[i + seq_length])
b_train = torch.stack(b_train)
b_target = torch.stack(b_target)
# print(r_train)
return r_data, b_data, r_train, r_target, b_train, b_target, r_mean, r_std, b_mean, b_std
def start_train(input_size, hidden_size, output_size, num_layers, train_data, target_data, num_epochs=100):
model = LSTMModel(input_size, hidden_size, output_size, num_layers)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.05)
# 训练模型
for epoch in range(num_epochs):
model.train()
optimizer.zero_grad()
# 前向传播
outputs = model(train_data)
loss = criterion(outputs, target_data)
# 反向传播和优化
loss.backward()
optimizer.step()
if (epoch + 1) % 10 == 0:
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
if epoch == int(num_epochs/2):
optimizer = optim.Adam(model.parameters(), lr=0.01)
return model
def start_predicted(model, predicted_data):
model.eval()
with torch.no_grad():
test_input = predicted_data.unsqueeze(0) # 使用最后seq_length个时间步作为输入
predicted = model(test_input)
# print("Predicted:", predicted)
return predicted
def start_all_train(hidden_size, num_layers, num_epochs, seq_length):
r_data, b_data, r_train, r_target, b_train, b_target, r_mean, r_std, b_mean, b_std = trans_process_data(seq_length)
# print(r_mean, r_std)
r_size = 5
r_model = start_train(r_size, hidden_size, r_size, num_layers, r_train, r_target, num_epochs)
predicted_data = r_data[-seq_length:]
r_predicted = start_predicted(r_model, predicted_data)
print("--------------------------bbbbb-------------------------------------------")
b_size = 2
b_model = start_train(b_size, hidden_size, b_size, num_layers, b_train, b_target, num_epochs)
predicted_data = b_data[-seq_length:]
b_predicted = start_predicted(b_model, predicted_data)
print(r_predicted)
print(b_predicted)
r_predicted = r_predicted * r_std + r_mean
b_predicted = b_predicted * b_std + b_mean
print(r_predicted)
print(b_predicted)
return r_predicted, b_predicted
if __name__ == '__main__':
hidden_size = 20
num_layers = 3
num_epochs = 1000
seq_length = 10
r_predicted, b_predicted = start_all_train(hidden_size, num_layers, num_epochs, seq_length)
# print(r_predicted)
# print(b_predicted)
2.随机预测
下面是随机选号预测
import random
import numpy as np
from collections import Counter
# 大乐透和双色球不一样
r_len = 5
r_num = 35
b_len = 2
b_num = 12
# 双色球
# r_len = 6
# r_num = 33
#
# b_len = 1
# b_num = 16
number = 100000000
li = []
li_r = []
li_b = []
for i in range(number):
r_li = random.sample(range(1, r_num+1), r_len)
b_li = random.sample(range(1, b_num+1), b_len)
li_r.extend(r_li)
li_b.extend(b_li)
print(i)
counter_li_r = Counter(li_r)
counter_li_b = Counter(li_b)
most_common_li_r = counter_li_r.most_common(r_len)
most_common_li_b = counter_li_b.most_common(b_len)
most_common_li_r = list(map(lambda x: x[0], most_common_li_r))
most_common_li_b = list(map(lambda x: x[0], most_common_li_b))
most_common_li_r.sort()
most_common_li_b.sort()
li = most_common_li_r
li.extend(most_common_li_b)
print("most: ", li)
most_least_li_r = counter_li_r.most_common()[-r_len-1:-1]
most_least_li_b = counter_li_b.most_common()[-b_len-1:-1]
most_least_li_r = list(map(lambda x: x[0], most_least_li_r))
most_least_li_b = list(map(lambda x: x[0], most_least_li_b))
most_least_li_r.sort()
most_least_li_b.sort()
li = most_least_li_r
li.extend(most_least_li_b)
print("least: ", li)
好运来,恭喜中一等奖