(base) root@huawei:/disk1/models# pwd
/disk1/models
(base) root@huawei:/disk1/models# cat /etc/issue
Ubuntu 20.04 LTS \n \l
(base) root@huawei:/disk1/models# free -g
total used free shared buff/cache available
Mem: 754 8 389 0 356 741
Swap: 7 0 7
(base) root@huawei:/disk1/models# lscpu|grep CPU
CPU op-mode(s): 64-bit
CPU(s): 192
On-line CPU(s) list: 0-191
NUMA node0 CPU(s): 0-23
NUMA node1 CPU(s): 24-47
NUMA node2 CPU(s): 48-71
NUMA node3 CPU(s): 72-95
NUMA node4 CPU(s): 96-119
NUMA node5 CPU(s): 120-143
NUMA node6 CPU(s): 144-167
NUMA node7 CPU(s): 168-191
(base) root@huawei:/disk1/models# df -hT
Filesystem Type Size Used Avail Use% Mounted on
udev devtmpfs 377G 0 377G 0% /dev
tmpfs tmpfs 76G 4.6M 76G 1% /run
/dev/sda2 ext4 439G 159G 258G 39% /
tmpfs tmpfs 378G 4.3M 378G 1% /dev/shm
tmpfs tmpfs 5.0M 0 5.0M 0% /run/lock
tmpfs tmpfs 378G 0 378G 0% /sys/fs/cgroup
/dev/sda1 vfat 511M 3.5M 508M 1% /boot/efi
/dev/loop7 squashfs 49M 49M 0 100% /snap/core18/2848
/dev/loop0 squashfs 69M 69M 0 100% /snap/core22/1720
/dev/loop6 squashfs 100M 100M 0 100% /snap/lxd/31572
/dev/loop2 squashfs 101M 101M 0 100% /snap/lxd/31822
/dev/loop3 squashfs 39M 39M 0 100% /snap/snapd/23546
/dev/loop4 squashfs 69M 69M 0 100% /snap/core22/1752
/dev/loop5 squashfs 49M 49M 0 100% /snap/core18/2857
overlay overlay 439G 159G 258G 39% /var/lib/docker/overlay2/3fb838ad167298740a56ca0038f073f7e3a212a7b4d5e7f295b85bd7130428aa/merged
/dev/loop1 squashfs 39M 39M 0 100% /snap/snapd/23772
/dev/mapper/testvg-testlv ext4 1.5T 226G 1.2T 17% /disk1
overlay overlay 439G 159G 258G 39% /var/lib/docker/overlay2/27007413f47cdafb51bbef36aa09298d95f6f9870d2ba16f3f74dfcbf1d7f5a9/merged
tmpfs tmpfs 76G 0 76G 0% /run/user/0
(base) root@huawei:/disk1/models# npu-smi info
+------------------------------------------------------------------------------------------------+
| npu-smi 23.0.0 Version: 23.0.0 |
+---------------------------+---------------+----------------------------------------------------+
| NPU Name | Health | Power(W) Temp(C) Hugepages-Usage(page)|
| Chip | Bus-Id | AICore(%) Memory-Usage(MB) HBM-Usage(MB) |
+===========================+===============+====================================================+
| 0 910PremiumA | OK | 98.6 75 0 / 0 |
| 0 | 0000:C1:00.0 | 0 1225 / 13553 1 / 32768 |
+===========================+===============+====================================================+
| 1 910PremiumA | OK | 102.6 75 0 / 0 |
| 0 | 0000:81:00.0 | 0 1973 / 15665 1 / 32768 |
+===========================+===============+====================================================+
| 2 910PremiumA | OK | 102.4 75 0 / 0 |
| 0 | 0000:41:00.0 | 0 2237 / 15665 1 / 32768 |
+===========================+===============+====================================================+
| 3 910PremiumA | OK | 100.0 75 0 / 0 |
| 0 | 0000:01:00.0 | 0 2944 / 15567 1 / 32768 |
+===========================+===============+====================================================+
| 4 910PremiumA | OK | 100.4 74 0 / 0 |
| 0 | 0000:C2:00.0 | 0 1415 / 13553 1 / 32768 |
+===========================+===============+====================================================+
| 5 910PremiumA | OK | 104.7 75 0 / 0 |
| 0 | 0000:82:00.0 | 0 1708 / 15665 1 / 32768 |
+===========================+===============+====================================================+
| 6 910PremiumA | OK | 101.1 75 0 / 0 |
| 0 | 0000:42:00.0 | 0 2342 / 15665 0 / 32768 |
+===========================+===============+====================================================+
| 7 910PremiumA | OK | 99.3 75 0 / 0 |
| 0 | 0000:02:00.0 | 0 2898 / 15567 1 / 32768 |
+===========================+===============+====================================================+
+---------------------------+---------------+----------------------------------------------------+
| NPU Chip | Process id | Process name | Process memory(MB) |
+===========================+===============+====================================================+
| No running processes found in NPU 0 |
+===========================+===============+====================================================+
| No running processes found in NPU 1 |
+===========================+===============+====================================================+
| No running processes found in NPU 2 |
+===========================+===============+====================================================+
| No running processes found in NPU 3 |
+===========================+===============+====================================================+
| No running processes found in NPU 4 |
+===========================+===============+====================================================+
| No running processes found in NPU 5 |
+===========================+===============+====================================================+
| No running processes found in NPU 6 |
+===========================+===============+====================================================+
| No running processes found in NPU 7 |
+===========================+===============+====================================================+
(base) root@huawei:/disk1/models# ll /disk1/models
total 220140
drwxrwxrwx 5 root root 4096 Mar 7 07:37 ./
drwxr-xr-x 4 root root 4096 Mar 7 06:11 ../
-rw-r--r-- 1 root root 4807602 Mar 7 01:59 Ascend-mindie-atb-models_1.0.0_linux-aarch64_py310_torch2.1.0-abi0.tar.gz
-rw-r--r-- 1 root root 4944832 Mar 7 01:59 Ascend-mindie-atb-models_1.0.0_linux-aarch64_py310_torch2.1.0-abi1.tar.gz
-rw-r--r-- 1 root root 4813371 Mar 7 01:59 Ascend-mindie-atb-models_1.0.0_linux-aarch64_py310_torch2.3.1-abi0.tar.gz
-rw-r--r-- 1 root root 4734426 Mar 7 01:59 Ascend-mindie-atb-models_1.0.0_linux-aarch64_py310_torch2.3.1-abi1.tar.gz
-rw-r--r-- 1 root root 4808762 Mar 7 01:59 Ascend-mindie-atb-models_1.0.0_linux-aarch64_py311_torch2.1.0-abi0.tar.gz
-rw-r--r-- 1 root root 4945450 Mar 7 01:59 Ascend-mindie-atb-models_1.0.0_linux-aarch64_py311_torch2.1.0-abi1.tar.gz
-rw-r--r-- 1 root root 4813791 Mar 7 01:59 Ascend-mindie-atb-models_1.0.0_linux-aarch64_py311_torch2.3.1-abi0.tar.gz
-rw-r--r-- 1 root root 4734373 Mar 7 01:59 Ascend-mindie-atb-models_1.0.0_linux-aarch64_py311_torch2.3.1-abi1.tar.gz
drwxrwxrwx 3 root root 4096 Mar 6 00:56 deepseek-ai/
-rw------- 1 root root 368 Mar 7 07:36 .msc
drwxrwxrwx 7 root root 4096 Mar 7 07:38 Qwen/
drwxrwxrwx 4 root root 4096 Mar 7 07:36 ._____temp/
-rw-r--r-- 1 root root 84138364 Oct 6 2023 torch-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
-rw-r--r-- 1 root root 89791945 Jul 24 2024 torch-2.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
-rw-r--r-- 1 root root 12845038 Mar 7 01:30 torch_npu-2.4.0.post2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
(base) root@huawei:/disk1/models#
运行容器:
docker run -it -d --name mindie-910a-t71 --ipc=host --net=host --shm-size=200g \
--device=/dev/davinci0 \
--device=/dev/davinci1 \
--device=/dev/davinci2 \
--device=/dev/davinci3 \
--device=/dev/davinci4 \
--device=/dev/davinci5 \
--device=/dev/davinci6 \
--device=/dev/davinci7 \
--device=/dev/davinci_manager \
--device=/dev/hisi_hdc \
--device=/dev/devmm_svm \
--entrypoint=bash \
-w /usr/local/Ascend/mindie/latest/mindie-llm/logs \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/sbin:/usr/local/sbin \
-v /usr/local/Ascend/driver/lib64/common:/usr/local/Ascend/driver/lib64/common \
-v /usr/local/Ascend/driver/lib64/driver:/usr/local/Ascend/driver/lib64/driver \
-v /etc/hccn.conf:/etc/hccn.conf \
-v /usr/share/zoneinfo/Asia/Shanghai:/etc/localtime \
-v /etc/ascend_install.info:/etc/ascend_install.info \
-v /etc/vnpu.cfg:/etc/vnpu.cfg \
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
-v /disk1/models:/models \
进入容器测试
docker exec -it mindie-910a-t71 bash
另外一个模型也可运行:
docker run -it -d --name mindie-910a-t65 --ipc=host --net=host --shm-size=200g \
--device=/dev/davinci0 \
--device=/dev/davinci1 \
--device=/dev/davinci2 \
--device=/dev/davinci3 \
--device=/dev/davinci4 \
--device=/dev/davinci5 \
--device=/dev/davinci6 \
--device=/dev/davinci7 \
--device=/dev/davinci_manager \
--device=/dev/hisi_hdc \
--device=/dev/devmm_svm \
--entrypoint=bash \
-w /usr/local/Ascend/mindie/latest/mindie-llm/logs \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/sbin:/usr/local/sbin \
-v /usr/local/Ascend/driver/lib64/common:/usr/local/Ascend/driver/lib64/common \
-v /usr/local/Ascend/driver/lib64/driver:/usr/local/Ascend/driver/lib64/driver \
-v /etc/hccn.conf:/etc/hccn.conf \
-v /usr/share/zoneinfo/Asia/Shanghai:/etc/localtime \
-v /etc/ascend_install.info:/etc/ascend_install.info \
-v /etc/vnpu.cfg:/etc/vnpu.cfg \
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
-v /disk1/models:/models \
swr.cn-central-221.ovaijisuan.com/wh-aicc-fae/mindie:910a-ascend_23.0.0-cann_8.0.rc3-py_3.10-ubuntu_22.04-aarch64-mindie_1.0.t65
docker exec -it mindie-910a-t65 bash
torchrun --nproc_per_node 2 --master_port 20030 -m examples.run_pa --model_path /models/Qwen/Qwen2___5-7B-Instruct --input_texts "你好,请介绍一下武汉" --max_batch_size 2


测试结果:
1.运行Qwen2.5-7B-Instruct正常:
(Python310) root@huawei:/usr/local/Ascend/atb-models# torchrun --nproc_per_node 2 --master_port 20030 -m examples.run_pa --model_path /models/Qwen/Qwen2___5-7B-Instruct --input_texts "你好,请介绍一下武汉" --max_batch_size 2
[2025-03-07 16:32:36,351] torch.distributed.run: [WARNING]
[2025-03-07 16:32:36,351] torch.distributed.run: [WARNING] *****************************************
[2025-03-07 16:32:36,351] torch.distributed.run: [WARNING] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
[2025-03-07 16:32:36,351] torch.distributed.run: [WARNING] *****************************************
[2025-03-07 16:32:46,307] [22204] [281473125748752] [llm] [INFO][logging.py-227] : Skip binding cpu.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
[2025-03-07 16:32:46,855] [22204] [281473125748752] [llm] [INFO][logging.py-227] : model_runner.quantize: None, model_runner.kv_quant_type: None, model_runner.fa_quant_type: None, model_runner.dtype: torch.float16
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
[2025-03-07 16:32:54,824] [22204] [281473125748752] [llm] [INFO][dist.py-81] : initialize_distributed has been Set
[2025-03-07 16:32:54,826] [22204] [281473125748752] [llm] [INFO][logging.py-227] : init tokenizer done: Qwen2TokenizerFast(name_or_path='/models/Qwen/Qwen2___5-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='left', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False), added_tokens_decoder={
151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151657: AddedToken("<tool_call>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False),
151658: AddedToken("</tool_call>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False),
151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False),
151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False),
151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False),
151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False),
151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False),
151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False),
}
[2025-03-07 16:32:54,834] [22204] [281473125748752] [llm] [INFO][logging.py-227] : NPUSocInfo(soc_name='', soc_version=100, need_nz=True, matmul_nd_nz=False)
[2025-03-07 16:32:55,027] [22204] [281473125748752] [llm] [INFO][flash_causal_qwen2.py-122] : >>>> qwen_QwenDecoderModel is called.
[2025-03-07 16:32:55,130] [22205] [281472994160656] [llm] [INFO][dist.py-81] : initialize_distributed has been Set
[2025-03-07 16:32:55,324] [22205] [281472994160656] [llm] [INFO][flash_causal_qwen2.py-122] : >>>> qwen_QwenDecoderModel is called.
[2025-03-07 16:33:33,519] [22205] [281472994160656] [llm] [INFO][cache.py-98] : kv cache will allocate 0.0615234375GB memory
[2025-03-07 16:33:34,434] [22205] [281472994160656] [llm] [INFO][flash_causal_qwen2.py-435] : <<<<<<<after transdata k_caches[0].shape=torch.Size([18, 16, 128, 16])
[2025-03-07 16:33:41,789] [22204] [281473125748752] [llm] [INFO][logging.py-227] : model:
FlashQwen2ForCausalLM(
(rotary_embedding): PositionRotaryEmbedding()
(attn_mask): AttentionMask()
(transformer): FlashQwenModel(
(wte): TensorParallelEmbedding()
(h): ModuleList(
(0-27): 28 x FlashQwenLayer(
(attn): FlashQwenAttention(
(rotary_emb): PositionRotaryEmbedding()
(c_attn): TensorParallelColumnLinear(
(linear): FastLinear()
)
(c_proj): TensorParallelRowLinear(
(linear): FastLinear()
)
)
(mlp): QwenMLP(
(act): SiLU()
(w2_w1): TensorParallelColumnLinear(
(linear): FastLinear()
)
(c_proj): TensorParallelRowLinear(
(linear): FastLinear()
)
)
(ln_1): QwenRMSNorm()
(ln_2): QwenRMSNorm()
)
)
(ln_f): QwenRMSNorm()
)
(lm_head): TensorParallelHead(
(linear): FastLinear()
)
)
[2025-03-07 16:33:43,496] [22204] [281473125748752] [llm] [INFO][logging.py-227] : hbm_capacity(GB): 13.2353515625, init_memory(GB): 1.323535155504942
[2025-03-07 16:33:43,496] [22204] [281473125748752] [llm] [INFO][logging.py-227] : pa_runner: PARunner(model_path=/models/Qwen/Qwen2___5-7B-Instruct, input_text=None, max_position_embeddings=None, max_input_length=1024, max_output_length=20, max_prefill_tokens=-1, load_tokenizer=True, enable_atb_torch=False, max_prefill_batch_size=None, max_batch_size=2, dtype=torch.float16, block_size=128, model_config=ModelConfig(num_heads=14, num_kv_heads=2, num_kv_heads_origin=4, head_size=128, k_head_size=128, v_head_size=128, num_layers=28, device=npu:0, dtype=torch.float16, soc_info=NPUSocInfo(soc_name='', soc_version=100, need_nz=True, matmul_nd_nz=False), kv_quant_type=None, fa_quant_type=None, mapping=Mapping(world_size=2, rank=0, pp_rank=0, pp_groups=[[0], [1]], micro_batch_size=2) ), cla_share_factor=1, , max_memory=14211350528,
[2025-03-07 16:33:43,497] [22204] [281473125748752] [llm] [INFO][logging.py-227] : ---------------begin warm_up---------------
[2025-03-07 16:33:43,497] [22204] [281473125748752] [llm] [INFO][cache.py-98] : kv cache will allocate 0.0615234375GB memory
[2025-03-07 16:33:43,499] [22204] [281473125748752] [llm] [INFO][logging.py-227] : ------total req num: 2, infer start--------
[2025-03-07 16:33:43,504] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,505] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,505] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,505] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,506] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,506] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,507] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,507] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,508] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,508] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,508] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,508] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,509] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,509] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,509] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,510] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,510] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,510] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,511] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,511] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,511] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,512] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,512] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,512] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,513] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,513] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,513] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,514] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,514] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,514] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,514] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,515] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,515] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,515] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,516] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,516] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,516] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,517] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,517] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,517] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,518] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,518] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,518] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,519] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,519] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,519] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,520] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,520] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,520] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,521] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,521] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,521] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,522] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,522] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,522] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,522] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,523] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,523] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,523] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,524] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,524] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,524] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,525] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,525] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,525] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,526] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,526] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,526] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,527] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,527] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,527] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,528] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,528] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,528] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,529] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,529] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,529] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,530] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,530] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,530] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,531] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,531] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,531] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,531] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,532] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,532] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,532] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,533] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,533] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,533] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,534] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,534] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,534] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,535] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,535] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,535] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,536] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,536] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,536] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,536] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,537] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,537] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,537] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,538] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,538] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,538] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,539] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,539] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,539] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,540] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,540] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,540] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:43,541] [22204] [281473125748752] [llm] [INFO][logging.py-227] : trans to 29
[2025-03-07 16:33:44,367] [22204] [281473125748752] [llm] [INFO][logging.py-227] : <<<<<<< ori k_caches[0].shape=torch.Size([18, 16, 128, 16])
[2025-03-07 16:33:44,376] [22204] [281473125748752] [llm] [INFO][flash_causal_qwen2.py-435] : <<<<<<<after transdata k_caches[0].shape=torch.Size([18, 16, 128, 16])
[2025-03-07 16:33:44,376] [22204] [281473125748752] [llm] [INFO][logging.py-227] : >>>>>>id of kcache is 281470252742704 id of vcache is 281470252742784
[2025-03-07 16:33:46,979] [22204] [281473125748752] [llm] [INFO][logging.py-227] : warmup_memory(GB): 1.32
[2025-03-07 16:33:46,979] [22204] [281473125748752] [llm] [INFO][logging.py-227] : ---------------end warm_up---------------
[2025-03-07 16:33:46,979] [22204] [281473125748752] [llm] [INFO][logging.py-227] : ---------------begin inference---------------
[2025-03-07 16:33:47,060] [22204] [281473125748752] [llm] [INFO][logging.py-227] : ------total req num: 2, infer start--------
[2025-03-07 16:33:48,480] [22204] [281473125748752] [llm] [INFO][logging.py-227] : ---------------end inference---------------
[2025-03-07 16:33:48,480] [22204] [281473125748752] [llm] [INFO][logging.py-227] : Answer[0]: 大学的历史和特色。
武汉大学是中国著名的高等学府之一,位于湖北省武汉市,创建于
[2025-03-07 16:33:48,480] [22204] [281473125748752] [llm] [INFO][logging.py-227] : Generate[0] token num: (0, 20)
[2025-03-07 16:33:48,480] [22204] [281473125748752] [llm] [INFO][logging.py-227] : Answer[1]: 大学的历史和特色。
武汉大学是中国著名的高等学府之一,位于湖北省武汉市,创建于
[2025-03-07 16:33:48,480] [22204] [281473125748752] [llm] [INFO][logging.py-227] : Generate[1] token num: (1, 40)
(Python310) root@huawei:/usr/local/Ascend/atb-models# ll /models/Qwen/
total 40
drwxrwxrwx 7 root root 4096 Mar 7 15:38 ./
drwxrwxrwx 5 root root 4096 Mar 7 15:37 ../
drwxr-xr-x 3 root root 4096 Mar 7 15:38 Qwen2.5-72B-Instruct/
lrwxrwxrwx 1 root root 72 Mar 6 00:57 Qwen2.5-72B-Instruct-GPTQ-Int4 -> /root/.cache/modelscope/hub/models/Qwen/Qwen2___5-72B-Instruct-GPTQ-Int4
lrwxrwxrwx 1 root root 61 Mar 6 14:19 Qwen2.5-7B-Instruct -> /root/.cache/modelscope/hub/models/Qwen/Qwen2___5-7B-Instruct
lrwxrwxrwx 1 root root 65 Mar 6 05:42 Qwen2.5-VL-72B-Instruct -> /root/.cache/modelscope/hub/models/Qwen/Qwen2___5-VL-72B-Instruct
drwxr-xr-x 2 root root 4096 Mar 7 14:04 Qwen2___5-72B-Instruct/
drwxr-x--- 2 root root 4096 Mar 7 15:28 Qwen2___5-72B-Instruct-GPTQ-Int4/
drwxr-x--- 2 root root 4096 Mar 6 16:18 Qwen2___5-7B-Instruct/
drwxr-x--- 2 root root 4096 Mar 6 05:42 Qwen2___5-VL-72B-Instruct/
2.运行Qwen2.5-72B-Instruct-GPTQ-Int4报错:
(Python310) root@huawei:/usr/local/Ascend/atb-models# torchrun --nproc_per_node 8 --master_port 20030 -m examples.run_pa --model_path "/models/Qwen/Qwen2___5-72B-Instruct-GPTQ-Int4" --input_texts "你好,请介绍一下武汉" --max_batch_size 8
[2025-03-07 16:36:38,408] torch.distributed.run: [WARNING]
[2025-03-07 16:36:38,408] torch.distributed.run: [WARNING] *****************************************
[2025-03-07 16:36:38,408] torch.distributed.run: [WARNING] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
[2025-03-07 16:36:38,408] torch.distributed.run: [WARNING] *****************************************
[2025-03-07 16:36:49,200] [24163] [281473876656144] [llm] [INFO][logging.py-227] : Skip binding cpu.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
[2025-03-07 16:36:49,770] [24163] [281473876656144] [llm] [INFO][logging.py-227] : model_runner.quantize: None, model_runner.kv_quant_type: None, model_runner.fa_quant_type: None, model_runner.dtype: torch.float16
[2025-03-07 16:36:57,840] [24166] [281473450606608] [llm] [INFO][dist.py-81] : initialize_distributed has been Set
[2025-03-07 16:36:58,085] [24167] [281473718341648] [llm] [INFO][dist.py-81] : initialize_distributed has been Set
[2025-03-07 16:36:58,084] [24170] [281472927670288] [llm] [INFO][dist.py-81] : initialize_distributed has been Set
[2025-03-07 16:36:58,111] [24168] [281473527169040] [llm] [INFO][dist.py-81] : initialize_distributed has been Set
[2025-03-07 16:36:58,285] [24166] [281473450606608] [llm] [INFO][flash_causal_qwen2.py-122] : >>>> qwen_QwenDecoderModel is called.
[2025-03-07 16:36:58,472] [24167] [281473718341648] [llm] [INFO][flash_causal_qwen2.py-122] : >>>> qwen_QwenDecoderModel is called.
[2025-03-07 16:36:58,579] [24170] [281472927670288] [llm] [INFO][flash_causal_qwen2.py-122] : >>>> qwen_QwenDecoderModel is called.
[2025-03-07 16:36:58,598] [24168] [281473527169040] [llm] [INFO][flash_causal_qwen2.py-122] : >>>> qwen_QwenDecoderModel is called.
[2025-03-07 16:36:58,637] [24164] [281473344917520] [llm] [INFO][dist.py-81] : initialize_distributed has been Set
[2025-03-07 16:36:58,698] [24169] [281472867508240] [llm] [INFO][dist.py-81] : initialize_distributed has been Set
[2025-03-07 16:36:58,975] [24163] [281473876656144] [llm] [INFO][dist.py-81] : initialize_distributed has been Set
[2025-03-07 16:36:59,001] [24163] [281473876656144] [llm] [INFO][logging.py-227] : init tokenizer done: Qwen2TokenizerFast(name_or_path='/models/Qwen/Qwen2___5-72B-Instruct-GPTQ-Int4', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='left', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False), added_tokens_decoder={
151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
151657: AddedToken("<tool_call>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False),
151658: AddedToken("</tool_call>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False),
151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False),
151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False),
151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False),
151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False),
151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False),
151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False),
}
[2025-03-07 16:36:59,018] [24164] [281473344917520] [llm] [INFO][flash_causal_qwen2.py-122] : >>>> qwen_QwenDecoderModel is called.
[2025-03-07 16:36:58,930] [24165] [281473872347152] [llm] [INFO][dist.py-81] : initialize_distributed has been Set
[2025-03-07 16:36:59,066] [24163] [281473876656144] [llm] [INFO][logging.py-227] : NPUSocInfo(soc_name='', soc_version=100, need_nz=True, matmul_nd_nz=False)
[2025-03-07 16:36:59,212] [24169] [281472867508240] [llm] [INFO][flash_causal_qwen2.py-122] : >>>> qwen_QwenDecoderModel is called.
Traceback (most recent call last):
File "/root/miniconda3/envs/Python310/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/root/miniconda3/envs/Python310/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/usr/local/Ascend/atb-models/examples/run_pa.py", line 500, in <module>
pa_runner = PARunner(**input_dict)
File "/usr/local/Ascend/atb-models/examples/run_pa.py", line 97, in init
self.model.load_weights(**kw_args)
File "/usr/local/Ascend/atb-models/atb_llm/runner/model_runner.py", line 161, in load_weights
self.model = self.model_cls(self.config,
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/flash_causal_qwen2.py", line 32, in init
self.transformer = FlashQwenModel(config, weights, model_prefix=model_prefix, lmhead_prefix=lmhead_prefix)
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 407, in init
[
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 408, in <listcomp>
FlashQwenLayer(
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 278, in init
self.attn = FlashQwenAttention(
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 149, in init
self.c_attn = load_column_multi(
File "/usr/local/Ascend/atb-models/atb_llm/utils/layers/init.py", line 48, in load_column_multi
weight = weights.get_multi_weights_col(prefixes, quantize=quantize, dim=0, gqa_size=head_size)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 657, in get_multi_weights_col
w = [self.get_sharded(f"{p}.weight", dim=dim, gqa_size=gqa_size) for p in prefixes]
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 657, in <listcomp>
w = [self.get_sharded(f"{p}.weight", dim=dim, gqa_size=gqa_size) for p in prefixes]
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 331, in get_sharded
slice_ = self._get_slice(tensor_name)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 718, in _get_slice
filename, tensor_name = self.get_filename(tensor_name)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 146, in get_filename
raise AssertionError(f"weight {tensor_name} does not exist")
AssertionError: weight model.layers.0.self_attn.q_proj.weight does not exist
[2025-03-07 16:36:59,423] [24163] [281473876656144] [llm] [INFO][flash_causal_qwen2.py-122] : >>>> qwen_QwenDecoderModel is called.
Traceback (most recent call last):
File "/root/miniconda3/envs/Python310/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/root/miniconda3/envs/Python310/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/usr/local/Ascend/atb-models/examples/run_pa.py", line 500, in <module>
pa_runner = PARunner(**input_dict)
File "/usr/local/Ascend/atb-models/examples/run_pa.py", line 97, in init
self.model.load_weights(**kw_args)
File "/usr/local/Ascend/atb-models/atb_llm/runner/model_runner.py", line 161, in load_weights
self.model = self.model_cls(self.config,
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/flash_causal_qwen2.py", line 32, in init
self.transformer = FlashQwenModel(config, weights, model_prefix=model_prefix, lmhead_prefix=lmhead_prefix)
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 407, in init
[
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 408, in <listcomp>
FlashQwenLayer(
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 278, in init
self.attn = FlashQwenAttention(
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 149, in init
self.c_attn = load_column_multi(
File "/usr/local/Ascend/atb-models/atb_llm/utils/layers/init.py", line 48, in load_column_multi
weight = weights.get_multi_weights_col(prefixes, quantize=quantize, dim=0, gqa_size=head_size)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 657, in get_multi_weights_col
w = [self.get_sharded(f"{p}.weight", dim=dim, gqa_size=gqa_size) for p in prefixes]
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 657, in <listcomp>
w = [self.get_sharded(f"{p}.weight", dim=dim, gqa_size=gqa_size) for p in prefixes]
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 331, in get_sharded
slice_ = self._get_slice(tensor_name)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 718, in _get_slice
filename, tensor_name = self.get_filename(tensor_name)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 146, in get_filename
raise AssertionError(f"weight {tensor_name} does not exist")
AssertionError: weight model.layers.0.self_attn.q_proj.weight does not exist
Traceback (most recent call last):
File "/root/miniconda3/envs/Python310/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/root/miniconda3/envs/Python310/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/usr/local/Ascend/atb-models/examples/run_pa.py", line 500, in <module>
pa_runner = PARunner(**input_dict)
File "/usr/local/Ascend/atb-models/examples/run_pa.py", line 97, in init
self.model.load_weights(**kw_args)
File "/usr/local/Ascend/atb-models/atb_llm/runner/model_runner.py", line 161, in load_weights
self.model = self.model_cls(self.config,
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/flash_causal_qwen2.py", line 32, in init
self.transformer = FlashQwenModel(config, weights, model_prefix=model_prefix, lmhead_prefix=lmhead_prefix)
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 407, in init
[
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 408, in <listcomp>
FlashQwenLayer(
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 278, in init
self.attn = FlashQwenAttention(
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 149, in init
self.c_attn = load_column_multi(
File "/usr/local/Ascend/atb-models/atb_llm/utils/layers/init.py", line 48, in load_column_multi
weight = weights.get_multi_weights_col(prefixes, quantize=quantize, dim=0, gqa_size=head_size)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 657, in get_multi_weights_col
w = [self.get_sharded(f"{p}.weight", dim=dim, gqa_size=gqa_size) for p in prefixes]
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 657, in <listcomp>
w = [self.get_sharded(f"{p}.weight", dim=dim, gqa_size=gqa_size) for p in prefixes]
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 331, in get_sharded
slice_ = self._get_slice(tensor_name)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 718, in _get_slice
filename, tensor_name = self.get_filename(tensor_name)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 146, in get_filename
raise AssertionError(f"weight {tensor_name} does not exist")
AssertionError: weight model.layers.0.self_attn.q_proj.weight does not exist
[2025-03-07 16:36:59,662] [24165] [281473872347152] [llm] [INFO][flash_causal_qwen2.py-122] : >>>> qwen_QwenDecoderModel is called.
Traceback (most recent call last):
File "/root/miniconda3/envs/Python310/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/root/miniconda3/envs/Python310/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/usr/local/Ascend/atb-models/examples/run_pa.py", line 500, in <module>
pa_runner = PARunner(**input_dict)
File "/usr/local/Ascend/atb-models/examples/run_pa.py", line 97, in init
self.model.load_weights(**kw_args)
File "/usr/local/Ascend/atb-models/atb_llm/runner/model_runner.py", line 161, in load_weights
self.model = self.model_cls(self.config,
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/flash_causal_qwen2.py", line 32, in init
self.transformer = FlashQwenModel(config, weights, model_prefix=model_prefix, lmhead_prefix=lmhead_prefix)
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 407, in init
[
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 408, in <listcomp>
FlashQwenLayer(
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 278, in init
self.attn = FlashQwenAttention(
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 149, in init
self.c_attn = load_column_multi(
File "/usr/local/Ascend/atb-models/atb_llm/utils/layers/init.py", line 48, in load_column_multi
weight = weights.get_multi_weights_col(prefixes, quantize=quantize, dim=0, gqa_size=head_size)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 657, in get_multi_weights_col
w = [self.get_sharded(f"{p}.weight", dim=dim, gqa_size=gqa_size) for p in prefixes]
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 657, in <listcomp>
w = [self.get_sharded(f"{p}.weight", dim=dim, gqa_size=gqa_size) for p in prefixes]
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 331, in get_sharded
slice_ = self._get_slice(tensor_name)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 718, in _get_slice
filename, tensor_name = self.get_filename(tensor_name)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 146, in get_filename
raise AssertionError(f"weight {tensor_name} does not exist")
AssertionError: weight model.layers.0.self_attn.q_proj.weight does not exist
Traceback (most recent call last):
File "/root/miniconda3/envs/Python310/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/root/miniconda3/envs/Python310/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/usr/local/Ascend/atb-models/examples/run_pa.py", line 500, in <module>
pa_runner = PARunner(**input_dict)
File "/usr/local/Ascend/atb-models/examples/run_pa.py", line 97, in init
self.model.load_weights(**kw_args)
File "/usr/local/Ascend/atb-models/atb_llm/runner/model_runner.py", line 161, in load_weights
self.model = self.model_cls(self.config,
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/flash_causal_qwen2.py", line 32, in init
self.transformer = FlashQwenModel(config, weights, model_prefix=model_prefix, lmhead_prefix=lmhead_prefix)
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 407, in init
[
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 408, in <listcomp>
FlashQwenLayer(
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 278, in init
self.attn = FlashQwenAttention(
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 149, in init
self.c_attn = load_column_multi(
File "/usr/local/Ascend/atb-models/atb_llm/utils/layers/init.py", line 48, in load_column_multi
weight = weights.get_multi_weights_col(prefixes, quantize=quantize, dim=0, gqa_size=head_size)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 657, in get_multi_weights_col
w = [self.get_sharded(f"{p}.weight", dim=dim, gqa_size=gqa_size) for p in prefixes]
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 657, in <listcomp>
w = [self.get_sharded(f"{p}.weight", dim=dim, gqa_size=gqa_size) for p in prefixes]
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 331, in get_sharded
slice_ = self._get_slice(tensor_name)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 718, in _get_slice
filename, tensor_name = self.get_filename(tensor_name)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 146, in get_filename
raise AssertionError(f"weight {tensor_name} does not exist")
AssertionError: weight model.layers.0.self_attn.q_proj.weight does not exist
Traceback (most recent call last):
File "/root/miniconda3/envs/Python310/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/root/miniconda3/envs/Python310/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/usr/local/Ascend/atb-models/examples/run_pa.py", line 500, in <module>
pa_runner = PARunner(**input_dict)
File "/usr/local/Ascend/atb-models/examples/run_pa.py", line 97, in init
self.model.load_weights(**kw_args)
File "/usr/local/Ascend/atb-models/atb_llm/runner/model_runner.py", line 161, in load_weights
self.model = self.model_cls(self.config,
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/flash_causal_qwen2.py", line 32, in init
self.transformer = FlashQwenModel(config, weights, model_prefix=model_prefix, lmhead_prefix=lmhead_prefix)
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 407, in init
[
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 408, in <listcomp>
FlashQwenLayer(
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 278, in init
self.attn = FlashQwenAttention(
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 149, in init
self.c_attn = load_column_multi(
File "/usr/local/Ascend/atb-models/atb_llm/utils/layers/init.py", line 48, in load_column_multi
weight = weights.get_multi_weights_col(prefixes, quantize=quantize, dim=0, gqa_size=head_size)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 657, in get_multi_weights_col
w = [self.get_sharded(f"{p}.weight", dim=dim, gqa_size=gqa_size) for p in prefixes]
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 657, in <listcomp>
w = [self.get_sharded(f"{p}.weight", dim=dim, gqa_size=gqa_size) for p in prefixes]
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 331, in get_sharded
slice_ = self._get_slice(tensor_name)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 718, in _get_slice
filename, tensor_name = self.get_filename(tensor_name)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 146, in get_filename
raise AssertionError(f"weight {tensor_name} does not exist")
AssertionError: weight model.layers.0.self_attn.q_proj.weight does not exist
Traceback (most recent call last):
File "/root/miniconda3/envs/Python310/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/root/miniconda3/envs/Python310/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/usr/local/Ascend/atb-models/examples/run_pa.py", line 500, in <module>
pa_runner = PARunner(**input_dict)
File "/usr/local/Ascend/atb-models/examples/run_pa.py", line 97, in init
self.model.load_weights(**kw_args)
File "/usr/local/Ascend/atb-models/atb_llm/runner/model_runner.py", line 161, in load_weights
self.model = self.model_cls(self.config,
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/flash_causal_qwen2.py", line 32, in init
self.transformer = FlashQwenModel(config, weights, model_prefix=model_prefix, lmhead_prefix=lmhead_prefix)
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 407, in init
[
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 408, in <listcomp>
FlashQwenLayer(
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 278, in init
self.attn = FlashQwenAttention(
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 149, in init
self.c_attn = load_column_multi(
File "/usr/local/Ascend/atb-models/atb_llm/utils/layers/init.py", line 48, in load_column_multi
weight = weights.get_multi_weights_col(prefixes, quantize=quantize, dim=0, gqa_size=head_size)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 657, in get_multi_weights_col
w = [self.get_sharded(f"{p}.weight", dim=dim, gqa_size=gqa_size) for p in prefixes]
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 657, in <listcomp>
w = [self.get_sharded(f"{p}.weight", dim=dim, gqa_size=gqa_size) for p in prefixes]
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 331, in get_sharded
slice_ = self._get_slice(tensor_name)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 718, in _get_slice
filename, tensor_name = self.get_filename(tensor_name)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 146, in get_filename
raise AssertionError(f"weight {tensor_name} does not exist")
AssertionError: weight model.layers.0.self_attn.q_proj.weight does not exist
Traceback (most recent call last):
File "/root/miniconda3/envs/Python310/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/root/miniconda3/envs/Python310/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/usr/local/Ascend/atb-models/examples/run_pa.py", line 500, in <module>
pa_runner = PARunner(**input_dict)
File "/usr/local/Ascend/atb-models/examples/run_pa.py", line 97, in init
self.model.load_weights(**kw_args)
File "/usr/local/Ascend/atb-models/atb_llm/runner/model_runner.py", line 161, in load_weights
self.model = self.model_cls(self.config,
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/flash_causal_qwen2.py", line 32, in init
self.transformer = FlashQwenModel(config, weights, model_prefix=model_prefix, lmhead_prefix=lmhead_prefix)
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 407, in init
[
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 408, in <listcomp>
FlashQwenLayer(
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 278, in init
self.attn = FlashQwenAttention(
File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2/modeling_qwen2.py", line 149, in init
self.c_attn = load_column_multi(
File "/usr/local/Ascend/atb-models/atb_llm/utils/layers/init.py", line 48, in load_column_multi
weight = weights.get_multi_weights_col(prefixes, quantize=quantize, dim=0, gqa_size=head_size)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 657, in get_multi_weights_col
w = [self.get_sharded(f"{p}.weight", dim=dim, gqa_size=gqa_size) for p in prefixes]
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 657, in <listcomp>
w = [self.get_sharded(f"{p}.weight", dim=dim, gqa_size=gqa_size) for p in prefixes]
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 331, in get_sharded
slice_ = self._get_slice(tensor_name)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 718, in _get_slice
filename, tensor_name = self.get_filename(tensor_name)
File "/usr/local/Ascend/atb-models/atb_llm/utils/weights.py", line 146, in get_filename
raise AssertionError(f"weight {tensor_name} does not exist")
AssertionError: weight model.layers.0.self_attn.q_proj.weight does not exist
[ERROR] 2025-03-07-16:37:05 (PID:24166, Device:3, RankID:-1) ERR99999 UNKNOWN application exception
[ERROR] 2025-03-07-16:37:05 (PID:24168, Device:5, RankID:-1) ERR99999 UNKNOWN application exception
[ERROR] 2025-03-07-16:37:05 (PID:24170, Device:7, RankID:-1) ERR99999 UNKNOWN application exception
[ERROR] 2025-03-07-16:37:05 (PID:24167, Device:4, RankID:-1) ERR99999 UNKNOWN application exception
[ERROR] 2025-03-07-16:37:06 (PID:24164, Device:1, RankID:-1) ERR99999 UNKNOWN application exception
[ERROR] 2025-03-07-16:37:06 (PID:24163, Device:0, RankID:-1) ERR99999 UNKNOWN application exception
[ERROR] 2025-03-07-16:37:06 (PID:24169, Device:6, RankID:-1) ERR99999 UNKNOWN application exception
[ERROR] 2025-03-07-16:37:07 (PID:24165, Device:2, RankID:-1) ERR99999 UNKNOWN application exception
[2025-03-07 16:37:13,455] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 24163 closing signal SIGTERM
[2025-03-07 16:37:13,487] torch.distributed.elastic.multiprocessing.api: [ERROR] failed (exitcode: 1) local_rank: 1 (pid: 24164) of binary: /root/miniconda3/envs/Python310/bin/python
Traceback (most recent call last):
File "/root/miniconda3/envs/Python310/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/root/miniconda3/envs/Python310/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/init.py", line 346, in wrapper
return f(*args, **kwargs)
File "/root/miniconda3/envs/Python310/lib/python3.10/site-packages/torch/distributed/run.py", line 806, in main
run(args)
File "/root/miniconda3/envs/Python310/lib/python3.10/site-packages/torch/distributed/run.py", line 797, in run
elastic_launch(
File "/root/miniconda3/envs/Python310/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 134, in call
return launch_agent(self._config, self._entrypoint, list(args))
File "/root/miniconda3/envs/Python310/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 264, in launch_agent
raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
============================================================
examples.run_pa FAILED
Failures:
[1]:
time : 2025-03-07_16:37:13
host : huawei
rank : 2 (local_rank: 2)
exitcode : 1 (pid: 24165)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[2]:
time : 2025-03-07_16:37:13
host : huawei
rank : 3 (local_rank: 3)
exitcode : 1 (pid: 24166)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[3]:
time : 2025-03-07_16:37:13
host : huawei
rank : 4 (local_rank: 4)
exitcode : 1 (pid: 24167)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[4]:
time : 2025-03-07_16:37:13
host : huawei
rank : 5 (local_rank: 5)
exitcode : 1 (pid: 24168)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[5]:
time : 2025-03-07_16:37:13
host : huawei
rank : 6 (local_rank: 6)
exitcode : 1 (pid: 24169)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[6]:
time : 2025-03-07_16:37:13
host : huawei
rank : 7 (local_rank: 7)
exitcode : 1 (pid: 24170)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
Root Cause (first observed failure):
[0]:
time : 2025-03-07_16:37:13
host : huawei
rank : 1 (local_rank: 1)
exitcode : 1 (pid: 24164)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================
(Python310) root@huawei:/usr/local/Ascend/atb-models#
执行量化版报错:

