最近由于在工作中涉及到了海量图形渲染的问题,因此我开始研究相关的解决方案。在这个过程中我阅读了文章 《Openlayers海量矢量面渲染优化》了解到了利用Canvas在前端生成图片渲染的思路,后来我又从同事那里了解到了后端生成图片渲染的思路。我认为这两种思路其实是相似的,在原理上都是一样,因此在这篇文章中我会把它们放在一起讨论。
一、什么是图片渲染?
在我了解了很多的海量图形渲染技术方案后,我发现其实有两个大的方向,我称之为"量变"与"质变"。其中"质变"就是指采用新的图形渲染逻辑来代替常规的图形渲染逻辑(常规的渲染逻辑就是将图形添加到矢量图层中渲染),而"图片渲染"就是一种典型的"质变"的方法。
"图片渲染"的基本思路思路是,我不直接在地图上绘制图形,而是先在其它的地方将图形绘制好,然后生成一张图片,最后再将图片以图片图层的形式渲染到地图上。
根据生成图片的位置方法的不同,"图片渲染"又可以分为前端图片生成和后端图片生成两种技术路线。
二、在前端生成图片实现图片渲染
1.利用Canvas生成图片并加载到地图上
在前端想要将空间图形绘制成一张图片,首推肯定是用Canvas来实现。
我们可以使用Openlayers的ImageCanvas
数据源,它可以支持将一个Canvas元素的图片作为数据源。
它的canvasFunction
属性接收一个Canvas函数,在Canvas函数中。我们需要创建一个Canvas元素,然后将图形绘制到Canvas画布上,并将Canvas元素作为函数的返回值,返回的Canvas元素将会作为一张图片。
最后我们再将ImageCanvas
数据源添加到一个ImageLayer
图层中,这样就可以在地图上加载图片了。
具体的实现方式可参考下面的代码:
JavaScript
// canvas渲染
function addRiver_canvas() {
// 读取GeoJSON数据
riverMeshFeatures = new GeoJSON().readFeatures(BJGrid, {
dataProjection: "EPSG:4547",
featureProjection: "EPSG:4326",
});
addColor();
// 添加遮罩图层
addMaskLayer();
// 获取地图的像素尺寸
const mapSize = window.map.getSize();
// 使用canvas渲染
riverCanvasLayer = new ImageLayer({
properties: {
name: "riverLayer_canvas",
},
zIndex: 1,
source: new ImageCanvas({
canvasFunction: (
_extent,
_resolution,
_pixelRatio,
size,
_projection
) => {
// 创建画布
const canvas = document.createElement("canvas");
const ctx = canvas.getContext("2d");
// 设置画布大小
canvas.width = size[0];
canvas.height = size[1];
// 计算缩放比例
const ratio = mapSize[0] / size[0];
// 设置字体
ctx.font = "60px Arial";
const features = riverMeshFeatures;
// 遍历要素,绘制
features.forEach(feature => {
// 每个格子设置颜色
const color = feature.get("color") || "#00008B";
// 几何要素
let coordinates = feature.getGeometry().getCoordinates()[0][0];
// 开始绘制路径
ctx.beginPath();
// 遍历环中的每个点并绘制格子
let pixel = [0, 0];
coordinates.forEach((point, index) => {
// 未转比例的坐标
const unconvertPixel = window.map.getPixelFromCoordinate(point);
// 转比例坐标
pixel = [unconvertPixel[0] / ratio, unconvertPixel[1] / ratio];
if (index === 0) {
// 将绘制起点移动到第一个点
ctx.moveTo(pixel[0], pixel[1]);
} else if (index === coordinates.length - 1) {
// 绘制闭合路径
ctx.closePath();
} else {
// 绘制线段到下一个点
ctx.lineTo(pixel[0], pixel[1]);
}
});
ctx.fillStyle = color;
ctx.fill();
// ctx.strokeStyle = "black";
// ctx.lineWidth = 1;
// ctx.stroke();
});
return canvas;
},
projection: "EPSG:4326",
ratio: 1,
interpolate: true,
}),
});
window.map.addLayer(riverCanvasLayer);
}
2.如何进行图片更新?
如果加载到地图上的Canvas图片的内容需要更新,可以通过调用CanvasImage
数据源的changed()
方法重新绘制canvas图片。
3.如何实现图形的点击交互?
由于我们渲染在地图上的是一张图片,因此图片中的图形实际上是无法进行交互的,比如说我想高亮显示被点击的图形,或者点击图形后通过弹窗展示图形的属性信息,这些功能就难以实现。想要实现图形交互就需要另辟蹊径,这里我提供两个解决方案。
方法一 利用 Geometry.intersectsCoordinate()
方法进行拓扑查询
大致的步骤如下:
- 首先通过地图的点击事件拿到点击位置的坐标
- 到图形数据池中去查找这个坐标与哪个图形相交,相交的图形就是被点击到的图形
- 最后去实现一些交互的效果
其中最关键的是第二步,我们要借助ol.geom.Geometry
的intersectsCoordinate()
方法来判断位置与图形是否相交。
JavaScript
// 添加网格的点击交互事件
window.map.on("click", handleCellClick);
JavaScript
// 点击交互事件处理函数
function handleCellClick(event) {
const coordinate = event.coordinate;
let clickedFeature;
const { length } = riverMeshFeatures;
let index = 0;
while (!clickedFeature && index < length) {
const feature = riverMeshFeatures[index];
const geometry = feature.getGeometry();
if (geometry.intersectsCoordinate(coordinate)) {
clickedFeature = feature;
}
index++;
}
console.log("点击事件", "网格" + index, clickedFeature);
}
方法二 使用"影子图层" 进行交互
大致的步骤如下:
- 创建一个矢量图层,并将所有图形都添加到图层中,同时禁止图层渲染,这个矢量图层就是我们图片图层的"影子图层"。
- 首先通过地图的点击事件拿到点击位置的坐标
- 在影子图层的数据源中查询这个坐标与哪个图形相交,相交的图形就是被点击到的图形
- 最后去实现一些交互的效果
JavaScript
// 创建矢量图层
const riverShadowLayer = getVectorLayer({
map: window.map,
layerName: "riverLayer_shadow",
style: new Style({
fill: new Fill({
color: "red",
}),
stroke: new Stroke({
color: "black",
width: 1,
}),
}),
zIndex: 2,
});
riverShadowLayer.getSource().addFeatures(riverMeshFeatures);
// 禁止矢量图层渲染
riverShadowLayer.setVisible(false);
window.map.on("click", event => {
const pixel = event.pixel;
const extent = new Point(
window.map.getCoordinateFromPixel(pixel)
).getExtent();
const features = [];
riverShadowLayer
.getSource()
.forEachFeatureIntersectingExtent(extent, feature => {
features.push(feature);
});
if (features.length > 0) {
const feature = features[0];
const properties = feature.getProperties();
}
});
三、在后端生成图片实现图片渲染
后端生成图片的这一整套流程我只是做了一定的了解,还没有进行实验测试,所以这里只阐述一个基本的思路,提供一些参考的代码,无法保证代码的准确性。
1.后端如何生成图片?
据我了解Java是有一个叫做GeoTools的库可以进行GIS开发。大致的思路是后端读取图形的数据,绘制成一个图层,然后将图层转为图片,最后将图片提供给前端。
当然具体的实现细节由于我不懂后端开发所以也没有办法给出介绍,我只能提供一个实例代码,有需要的可以参考一下。
Java
import com.alibaba.fastjson.JSONArray;
import com.alibaba.fastjson.JSONObject;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.google.common.io.Files;
import net.coobird.thumbnailator.Thumbnails;
import org.geotools.data.Base64;
import org.geotools.data.FileDataStore;
import org.geotools.data.FileDataStoreFinder;
import org.geotools.data.shapefile.ShapefileDataStore;
import org.geotools.data.simple.SimpleFeatureCollection;
import org.geotools.data.simple.SimpleFeatureIterator;
import org.geotools.data.simple.SimpleFeatureSource;
import org.geotools.feature.FeatureCollection;
import org.geotools.geometry.jts.JTSFactoryFinder;
import org.geotools.geometry.jts.ReferencedEnvelope;
import org.geotools.map.FeatureLayer;
import org.geotools.map.Layer;
import org.geotools.map.MapContent;
import org.geotools.renderer.GTRenderer;
import org.geotools.renderer.label.LabelCacheImpl;
import org.geotools.renderer.lite.StreamingRenderer;
import org.geotools.styling.*;
import org.geotools.geojson.feature.FeatureJSON;
import org.locationtech.jts.geom.Geometry;
import org.locationtech.jts.geom.GeometryFactory;
import org.opengis.feature.simple.SimpleFeature;
import javax.imageio.ImageIO;
import javax.imageio.stream.ImageOutputStream;
import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.*;
import java.nio.charset.Charset;
import java.util.List;
import java.util.*;
public class GeojsonToImageUtils {
/**
* 获取GeoJSON图片
* @param json
* @param imagePath
* @return
* @throws IOException
*/
public static String getGeojsonBase64(String json,String imagePath) throws IOException {
String imgStr=null;
try {
//String s = removeGeoJsonProperties(json);
// String s1 = geojson2img(json, imagePath);
// imgStr = getImgStr(s1);
}catch (Exception e){
e.printStackTrace();
}
return "data:image/png;base64,"+imgStr;
}
/*public void getJsonFilter(JSONObject jsonObject){
JSONArray array = new JSONArray();
jsonObject.getJSONArray("");
}*/
/**
* 生成图片
* @param json
* @param imgPath
* @throws IOException
*/
public static String geojson2img(String json,String imgPath,String fileName) throws IOException {
String caselsh = fileName.substring(0,fileName.lastIndexOf("."));
JSONObject j1=JSONObject.parseObject(json);
JSONArray array1=j1.getJSONArray("features");
/*Set<Integer> s=new HashSet<>();
for(int i=0;i<array1.size();i++){
JSONObject obj=array1.getJSONObject(i);
System.out.println(obj.getJSONObject("properties").getInteger("step"));
s.add(obj.getJSONObject("properties").getInteger("step"));
}
System.out.println(s.size());*/
String filename = caselsh+".png";
FeatureJSON featureJSON = new FeatureJSON();
FeatureCollection features = featureJSON.readFeatureCollection(json);
MapContent mapContent = new MapContent();
mapContent.setTitle("Quickstart");
Style style2 = SysUtil.createDefaultStyle(); //.createDefaultStyleChl(); 产汇流土地利用用的样式
Layer layer = new FeatureLayer(features, style2);
mapContent.addLayer(layer);
//mapContent.addLayers(getStyle1(features,json));
File outputFile = new File(imgPath+filename);
ImageOutputStream outputImageFile = null;
FileOutputStream fileOutputStream = null;
try {
fileOutputStream = new FileOutputStream(outputFile);
outputImageFile = ImageIO.createImageOutputStream(fileOutputStream);
//这个宽高需要按照经纬度计算宽高
//int w = 1500;
//int h =1923;
// 计算边界
ReferencedEnvelope bounds = features.getBounds();
double minX = bounds.getMinX();
double minY = bounds.getMinY();
double maxX = bounds.getMaxX();
double maxY = bounds.getMaxY();
// 设置图片的分辨率(每像素代表的经纬度单位)
double resolution = 0.001;
// 计算图片的宽高
int w = (int) Math.ceil((maxX - minX) / resolution);
int h = (int) Math.ceil((maxY - minY) / resolution);
//2400 * 2;
//int h = (int) (w * (768 / 506));//(w * (768 / 506));
BufferedImage bufferedImage = new BufferedImage(w, h, BufferedImage.TYPE_INT_ARGB);
Graphics2D g2d = bufferedImage.createGraphics();
mapContent.getViewport().setMatchingAspectRatio(true);
mapContent.getViewport().setScreenArea(new Rectangle(Math.round(w), Math.round(h)));
mapContent.getViewport().setBounds(bounds);
g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
Rectangle outputArea = new Rectangle(w, h);
//Rectangle outputArea = new Rectangle(250, 250);
//outputArea.setLocation(70,100);
GTRenderer renderer = new StreamingRenderer();
LabelCacheImpl labelCache = new LabelCacheImpl();
Map<Object, Object> hints = renderer.getRendererHints();
if (hints == null) {
hints = new HashMap<Object, Object>();
}
hints.put(StreamingRenderer.LABEL_CACHE_KEY, labelCache);
renderer.setRendererHints(hints);
renderer.setMapContent(mapContent);
renderer.paint(g2d, outputArea, bounds);
ImageIO.write(bufferedImage, "png", outputImageFile);
//下面这个是用来处理压缩输出图片的
//File yasuoTargetFile=new File("C:\Users\GuLiXin\Desktop\新建文件夹\压缩后\lucc\"+filename);
//压缩比例
// Thumbnails.of(outputFile).scale(1f).toFile(yasuoTargetFile);
System.out.println(filename+"转换完成");
if(outputFile.exists()){
outputFile.delete();
} //yasuo(imgPath+filename,imgPath+UUID.randomUUID().toString()+".png");
} catch (IOException ex) {
ex.printStackTrace();
} finally {
try {
if (outputImageFile != null) {
outputImageFile.flush();
outputImageFile.close();
fileOutputStream.flush();
fileOutputStream.close();
}
} catch (IOException e) {// don't care now
}
}
return imgPath+filename;
}
/**
* 生成样式
* @param features
* @param json
* @return
*/
public static List<Layer> getStyle1(FeatureCollection features, String json) throws IOException {
Integer geojsonType = getGeojsonType(json);
if (geojsonType == 1){
Style point = SLD.createSimpleStyle(features.getSchema(),roundColor());
return null;
}else if (geojsonType ==2){
Style lineStyle = SLD.createLineStyle(roundColor(), 1);
return null;
}else if(geojsonType == 3){
List<Layer> result = new ArrayList<Layer>();
JSONObject jsonObject = JSONObject.parseObject(json);
JSONArray feature = jsonObject.getJSONArray("features");
JSONArray array1 = new JSONArray();
JSONArray array2 = new JSONArray();
for (int i = 0; i < feature.size(); i++) {
JSONObject resultJson = JSONObject.parseObject(feature.get(i).toString());
JSONObject properties = resultJson.getJSONObject("properties");
Integer id = properties.getInteger("id");
if (id > 7000){
array1.add(feature.get(i));
}else {
array2.add(feature.get(i));
}
}
JSONObject j = new JSONObject();//(JSONObject)jsonObject.clone();
j.put("features",array1);
JSONObject k = new JSONObject();//(JSONObject)jsonObject.clone();
k.put("features",array2);
FeatureJSON featureJSON = new FeatureJSON();
FeatureCollection featureCollection = featureJSON.readFeatureCollection(j.toString());
FeatureCollection featureCollection2 = featureJSON.readFeatureCollection(k.toString());
Layer layer = new FeatureLayer(featureCollection, SLD.createPolygonStyle(Color.white, roundColor(), 1));
Layer layer1 = new FeatureLayer(featureCollection2, SLD.createPolygonStyle(Color.RED, roundColor(), 1));
result.add(layer);
result.add(layer1);
return result;
}
return null;
}
/**
* 生成样式
* @param features
* @param json
* @return
*/
public static Style getStyle(FeatureCollection features, String json){
Integer geojsonType = getGeojsonType(json);
if (geojsonType == 1){
Style point = SLD.createSimpleStyle(features.getSchema(),roundColor());
return point;
}else if (geojsonType ==2){
Style lineStyle = SLD.createLineStyle(roundColor(), 1);
return lineStyle;
}else if(geojsonType == 3){
Style polygonStyle = SLD.createPolygonStyle(Color.ORANGE, roundColor(), 1);
return polygonStyle;
}
return null;
}
/**
* 随机颜色
* @return
*/
public static Color roundColor(){
Random random = new Random();
float hue = random.nextFloat();
float saturation = (random.nextInt(2000) + 1000) / 10000f;
float luminance = 0.9f;
Color color = Color.getHSBColor(hue, saturation, luminance);
return color;
}
/**
* 去除properties属性
* @param jsonstr
* @return
*/
public static String removeGeoJsonProperties(String jsonstr){
JSONObject json = (JSONObject) JSONObject.parse(jsonstr);
JSONArray features = (JSONArray) json.get("features");
for (int i = 0; i < features.size(); i++) {
JSONObject feature = features.getJSONObject(i);
feature.remove("properties");
}
return json.toJSONString();
}
/**
* 获取GeoJSON类型
* @param strJson
* @return
*/
public static Integer getGeojsonType(String strJson){
JSONObject json = (JSONObject) JSONObject.parse(strJson);
JSONArray features = (JSONArray) json.get("features");
JSONObject feature0 = features.getJSONObject(0);
String strType = ((JSONObject)feature0.get("geometry")).getString("type").toString();
Integer geoType = null;
if ("Point".equals(strType)) {
geoType = 1;
} else if ("MultiPoint".equals(strType)) {
geoType = 1;
} else if ("LineString".equals(strType)) {
geoType = 2;
} else if ("MultiLineString".equals(strType)) {
geoType = 2;
} else if ("Polygon".equals(strType)) {
geoType = 3;
} else if ("MultiPolygon".equals(strType)) {
geoType = 3;
}
return geoType;
}
/**
* 将图片转换成Base64编码
* @param imgFile 待处理图片
* @return
*/
public static String getImgStr(String imgFile) {
// 将图片文件转化为字节数组字符串,并对其进行Base64编码处理
InputStream in = null;
byte[] data = null;
// 读取图片字节数组
try {
in = new FileInputStream(imgFile);
data = new byte[in.available()];
in.read(data);
in.close();
} catch (IOException e) {
e.printStackTrace();
}
return Base64.encodeBytes(data);//Base64.encodeBase64String(data);
}
/**
* 判断GeoJSON格式是否正确
* @param strJson
* @return
*/
public static boolean checkGeojson(String strJson){
Boolean flag = true;
JSONObject json = (JSONObject) JSONObject.parse(strJson);
if(!json.containsKey("features")){
return false;
}
JSONArray features = (JSONArray) json.get("features");
for (int i = 0; i < features.size(); i++) {
JSONObject feature = features.getJSONObject(i);
if (!feature.containsKey("geometry")){
flag = false;
break;
}
JSONObject geometry = (JSONObject)feature.get("geometry");
if (!geometry.containsKey("type")){
flag = false;
break;
}
if (!geometry.containsKey("coordinates")){
flag = false;
break;
}
}
return flag;
}
/**
* 生成多边形
* @param json
* @param imgPath
* @throws IOException
*/
public static String geojson3img(String json, String imgPath, String step, List<Layer> layerList, ReferencedEnvelope bounds) throws IOException {
String filename = UUID.randomUUID().toString()+"-"+step+".png";
//FeatureJSON featureJSON = new FeatureJSON();
//FeatureCollection features = featureJSON.readFeatureCollection(json);
MapContent mapContent = new MapContent();
mapContent.setTitle("Quickstart");
mapContent.addLayers(layerList);
File outputFile = new File(imgPath+filename);
ImageOutputStream outputImageFile = null;
FileOutputStream fileOutputStream = null;
try {
fileOutputStream = new FileOutputStream(outputFile);
outputImageFile = ImageIO.createImageOutputStream(fileOutputStream);
//int w = 384;
int w = 9960;
//ReferencedEnvelope bounds = features.getBounds();
int h = 4800;
//int h = (int) (w * (768 / 506));//(w * (768 / 506));
BufferedImage bufferedImage = new BufferedImage(w, h, BufferedImage.TYPE_INT_ARGB);
Graphics2D g2d = bufferedImage.createGraphics();
mapContent.getViewport().setMatchingAspectRatio(true);
mapContent.getViewport().setScreenArea(new Rectangle(Math.round(w), Math.round(h)));
mapContent.getViewport().setBounds(bounds);
g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
Rectangle outputArea = new Rectangle(9960, 4800);
//Rectangle outputArea = new Rectangle(250, 250);
//outputArea.setLocation(70,100);
GTRenderer renderer = new StreamingRenderer();
LabelCacheImpl labelCache = new LabelCacheImpl();
Map<Object, Object> hints = renderer.getRendererHints();
if (hints == null) {
hints = new HashMap<Object, Object>();
}
hints.put(StreamingRenderer.LABEL_CACHE_KEY, labelCache);
renderer.setRendererHints(hints);
renderer.setMapContent(mapContent);
renderer.paint(g2d, outputArea, bounds);
ImageIO.write(bufferedImage, "png", outputImageFile);
} catch (IOException ex) {
ex.printStackTrace();
} finally {
try {
if (outputImageFile != null) {
outputImageFile.flush();
outputImageFile.close();
fileOutputStream.flush();
fileOutputStream.close();
mapContent.dispose();
}
} catch (IOException e) {// don't care now
}
}
return imgPath+filename;
}
/**
* 获取指定文件夹下所有文件,不含文件夹里的文件
*
* @param dirFile 文件夹
* @return
*/
public static List<File> getAllFile(File dirFile) {
// 如果文件夹不存在或着不是文件夹,则返回 null
if (Objects.isNull(dirFile) || !dirFile.exists() || dirFile.isFile())
return null;
File[] childrenFiles = dirFile.listFiles();
if (Objects.isNull(childrenFiles) || childrenFiles.length == 0)
return null;
List<File> files = new ArrayList<>();
for (File childFile : childrenFiles) {
// 如果是文件,直接添加到结果集合
if (childFile.isFile()) {
files.add(childFile);
}
}
return files;
}
public static String shape2Geojson(String shpPath) {
StringBuffer sb = new StringBuffer();
sb.append("{"type":"FeatureCollection", "features": ");
FeatureJSON fJson = new FeatureJSON();
File file = new File(shpPath);
JSONArray array = new JSONArray();
JSONObject json = new JSONObject();
try {
ShapefileDataStore store = new ShapefileDataStore(file.toURI().toURL());
//设置编码
((ShapefileDataStore) store).setCharset(Charset.forName("ISO-8859-1"));
//store.setCharset(Charset.forName("UTF-8"));
//文件名称
String typeName = store.getTypeNames()[0];
SimpleFeatureSource featureSource = store.getFeatureSource(typeName);
SimpleFeatureIterator iterator = featureSource.getFeatures().features();
while (iterator.hasNext()) {
SimpleFeature feature = iterator.next();
StringWriter writer = new StringWriter();
fJson.writeFeature(feature, writer);
json = JSONObject.parseObject(writer.toString());
//使用jsonArray可以把所有数据转成一条;不使用,
array.add(json);
}
iterator.close();
sb.append(array.toJSONString());
sb.append("}");
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
WriteStringToFile(sb.toString(),"C:\Users\GuLiXin\Desktop\bhp\lucc.json");
return sb.toString();
}
public static void WriteStringToFile(String string,String jsonPath) {
String filePath = jsonPath;
try {
File file = new File(filePath);
PrintStream ps = new PrintStream(new FileOutputStream(file));
ps.append(string);
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public static void main(String[] args) throws Exception {
// String geojson = JsonFileUtil.readJsonFile("E:\data-2\step1.json");
//查询
//存入map筛选
//String geojsonBase64 = geojson2img(geojson, "C:\Users\GuLiXin\Desktop\新建文件夹\");
File f=new File("E:\data-50");
List<File> fileList=getAllFile(f);;
for (File file:fileList){
String geojson = JsonFileUtil.readJsonFile(file.getPath());
geojson2img(geojson, "C:\Users\GuLiXin\Desktop\新建文件夹\",file.getName());
}
// File f=new File("C:\Users\GuLiXin\Desktop\bhp\土地利用_2005.shp");
// FileDataStore dataStore=FileDataStoreFinder.getDataStore(f);
// String geoJson=shape2Geojson("C:\Users\GuLiXin\Desktop\bhp\土地利用_2005.shp");
//System.out.println(geoJson);
//File file=new File("C:\Users\GuLiXin\Desktop\data\lucc.json");
//String geojson = JsonFileUtil.readJsonFile(file.getPath());
// geojson2img(geoJson, "C:\Users\GuLiXin\Desktop\bhp",f.getName());
/*String shpPath = "";//shp文件地址
String geojsonPath = "";//生成的GeoJSON文件地址
String iamgepath="";
String geojson = ParsingShpFileUtils.shape2Geojson(shpPath, geojsonPath);
String geojsonBase64 = getGeojsonBase64(geojson, iamgepath);//base64 一般存库里*/
}
}
2.前端如何加载图片?
前端在拿到后端生成的图片后,通过ImageLaeyr
图层 + ImageStatic
数据源 就可以实现加载。
使用方式可以参考这个Openlayers示例:Image Reprojection