AI辅助编程_pyThon

以下是一个利用Qwen2.5 Max工具完成的数据分析与可视化示例,使用Python展示趋势、分布与相关性分析。


1. 生成示例数据

python 复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# 生成模拟数据(假设是某电商销售数据)
np.random.seed(42)
dates = pd.date_range(start='2023-01-01', periods=365, freq='D')
sales = np.random.normal(loc=1000, scale=300, size=365).cumsum() + np.random.randint(-50, 50, 365)
traffic = sales * 0.8 + np.random.normal(0, 100, 365)
conversion_rate = np.clip(np.random.normal(loc=0.1, scale=0.03, size=365), 0, 0.2)
customer_age = np.random.normal(loc=35, scale=10, size=365).astype(int)

df = pd.DataFrame({
    'Date': dates,
    'Sales': sales.astype(int),
    'Website_Traffic': traffic.astype(int),
    'Conversion_Rate': conversion_rate,
    'Customer_Age': customer_age
})

# 查看前5行数据
print(df.head())

2. 趋势分析(时间序列)

python 复制代码
plt.figure(figsize=(12, 6))

# 销售额趋势
plt.subplot(2, 1, 1)
sns.lineplot(x='Date', y='Sales', data=df, label='Daily Sales')
sns.regplot(x='Date', y='Sales', data=df, scatter=False, color='red', label='Trend Line')
plt.title('Sales Trend Over Time')

# 网站流量趋势
plt.subplot(2, 1, 2)
sns.lineplot(x='Date', y='Website_Traffic', data=df, color='green', label='Website Traffic')
plt.tight_layout()
plt.show()

3. 分布分析

python 复制代码
plt.figure(figsize=(12, 6))

# 销售额分布(直方图 + KDE)
plt.subplot(1, 2, 1)
sns.histplot(df['Sales'], kde=True, bins=30, color='blue')
plt.title('Sales Distribution')

# 转化率分布(箱线图)
plt.subplot(1, 2, 2)
sns.boxplot(y='Conversion_Rate', data=df, color='orange')
plt.title('Conversion Rate Distribution')

plt.tight_layout()
plt.show()

4. 相关性分析

python 复制代码
# 计算相关系数矩阵
corr_matrix = df[['Sales', 'Website_Traffic', 'Conversion_Rate', 'Customer_Age']].corr()

# 绘制热力图
plt.figure(figsize=(8, 6))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', vmin=-1, vmax=1)
plt.title('Correlation Heatmap')

# 散点图矩阵(数值变量关系)
sns.pairplot(df[['Sales', 'Website_Traffic', 'Conversion_Rate', 'Customer_Age']])
plt.show()

5. 关键结论示例

  1. 趋势:销售额与网站流量呈现相似的上升趋势(正相关)。
  2. 分布:销售额近似正态分布,转化率中位数约10%(存在部分异常低值)。
  3. 相关性:网站流量与销售额强相关(r≈0.85),用户年龄与转化率弱负相关(r≈-0.15)。
相关推荐
SSH_55233 小时前
【大模型】情绪对话模型项目研发
人工智能·python·语言模型
love530love3 小时前
【笔记】在 MSYS2(MINGW64)中安装 python-maturin 的记录
运维·开发语言·人工智能·windows·笔记·python
G皮T6 小时前
【Python Cookbook】文件与 IO(二)
python·i/o·io·文件·gzip·stringio·bytesio
封奚泽优6 小时前
使用Python绘制节日祝福——以端午节和儿童节为例
人工智能·python·深度学习
干啥都是小小白6 小时前
话题通信之python实现
python·机器人·ros
仟濹7 小时前
「数据采集与网络爬虫(使用Python工具)」【数据分析全栈攻略:爬虫+处理+可视化+报告】
大数据·爬虫·python·数据挖掘·数据分析
水银嘻嘻7 小时前
03 APP 自动化-定位元素工具&元素定位
python·appium·自动化
蹦蹦跳跳真可爱5897 小时前
Python----目标检测(《用于精确目标检测和语义分割的丰富特征层次结构》和R-CNN)
人工智能·python·深度学习·神经网络·目标检测·cnn
抽风的雨6108 小时前
【python深度学习】Day 42 Grad-CAM与Hook函数
开发语言·python·深度学习
Mikhail_G8 小时前
Python应用for循环临时变量作用域
大数据·运维·开发语言·python·数据分析