使用Wireshark抓包看看MCP背后的请求链路

前言

上回作者浅浅尝试了一口本地MCP服务的搭建,并成功运用在AI IDE中,详情在AI assistant本地部署Continue.dev + Ollama + MCP Server。 那么此次好奇这个提供了数据库query工具的MCP服务背后,究竟是用怎样的prompt与LLM交互呢?

动手

Wireshark抓包本地Ollama流量

  1. 打开Wireshark,选择关注本地Loopback:lo0

  2. 过滤Ollama服务端口 Ollama的默认服务端口是11434,可以在Terminal中检查状态:

bash 复制代码
# Linux/macOS
lsof -i :11434

# Windows
netstat -ano | findstr 11434

在Wireshark中过滤http and tcp.port == 11434

  1. 再次使用AI IDE,发起与AI agent的对话

  2. 停止抓包,保存capture,分析

  3. 重组数据流 a. 右键点击任意一个 HTTP 数据包(如 POST /api/chat)。 b. 选择 Follow > HTTP Stream。

  4. 分析请求体和返回体 这里我们会看到,Ollama的返回中采用了SSE的流式返回,会有多个json片段。这里可以将这些json片段保存至文件中,再通过jq快速提取:

bash 复制代码
cat sse_response.txt | jq -r '.message.content // empty' | tr -d '\n'

总结

分析MCP的tool_call请求体,可以帮助理解MCP背后的运行原理。(但这玩意儿是不是Token消耗的有点多啊?)

相关推荐
SLY司赖3 小时前
大模型应用开发之LLM入门
语言模型·chatgpt·llm
CodeDevMaster4 小时前
browser-use:AI驱动的浏览器自动化工具使用指南
python·llm
带刺的坐椅5 小时前
开发 MCP Proxy(代理)也可以用 Solon AI MCP 哟!
java·ai·llm·solon·mcp·mcp-server·mcp-client
胡攀峰13 小时前
第12章 微调生成模型
人工智能·大模型·llm·sft·强化学习·rlhf·指令微调
RUNTIME21 小时前
大模型微调实操记录
llm
数据智能老司机21 小时前
构建具备自主性的人工智能系统——探索协调者、工作者和委托者方法
深度学习·llm·aigc
数据智能老司机21 小时前
构建具备自主性的人工智能系统——使代理能够使用工具和进行规划
深度学习·llm·aigc
量子位1 天前
智能车速度刷新:仅 10 个月,首个纯端侧大模型上车量产!
人工智能·llm