PocketFlow介绍
PocketFlow是我最近在探索的一个LLM 框架,我觉得很有意思,因此推荐给大家。
这个框架最大的特点就是:"Pocket Flow,一个仅用 100 行代码实现的 LLM 框架"。
我很好奇,一个框架只有100行代码是怎么做到的,它又有什么魅力呢?
正如作者所言现在的LLM框架过于臃肿了!
在使用各种框架的过程中,你可能会有如下的感觉:
- 臃肿的抽象:正如 Octomind 的工程团队所解释的:"LangChain 在最初对我们简单的功能需求与它的使用假设相匹配时很有帮助。但其高级抽象很快使我们的代码更难以理解并令人沮丧地难以维护。"这些框架通过不必要的复杂性隐藏了简单功能。
- 实现噩梦:除了抽象之外,这些框架还给开发者带来了依赖项臃肿、版本冲突和不断变化的接口的负担。开发者经常抱怨:"它不稳定,接口不断变化,文档经常过时。"另一个开发者开玩笑说:"在读这句话的时间内,LangChain 已经弃用了 4 个类而没有更新文档。"
PocketFlow作者开始思考这个问题:"我们真的需要这么多的包装器吗?如果我们去掉一切会怎样?什么是真正最小且可行的?"
PocketFlow作者在过去一年从零开始构建 LLM 应用程序后,有了一个顿悟:在所有复杂性之下,LLM 系统本质上只是简单的有向图。通过去除不必要的层,他创建了 Pocket Flow------一个没有任何冗余、没有任何依赖、没有任何供应商锁定的框架,全部代码仅 100 行。

AI 系统框架的抽象、应用特定封装、供应商特定封装、代码行数和大小的比较。
来源:https://pocketflow.substack.com/p/i-built-an-llm-framework-in-just
GitHub地址:https://github.com/The-Pocket/PocketFlow

PocketFlow的构建块
flowchart TD id1[PocketFlow] -->b[Node] & c[Flow] & D[Shared Store]

理解PocketFlow需要理解Node、Flow与Shared Store这三个基本的概念。
想象 Pocket Flow 就像一个井然有序的厨房:
- Node就像烹饪站(切菜、烹饪、摆盘)
- Flow就像食谱,指示下一步访问哪个站台。
- Shared Store是所有工作站都能看到原料的台面。
在我们的厨房(代理系统),每个站点(Node)执行三个简单的操作:
- Prep: 从共享存储中获取你需要的东西(收集原料)
- Exec: 执行你的专门任务(烹饪原料)
- Post: 将结果返回到共享存储并确定下一步行动(上菜并决定下一步做什么)
flowchart TD id1[Node] -->b[Prep] & c[Exec] & D[Post]

食谱 (Flow) 依据条件 (Orch) 指导执行:
- "如果蔬菜被切碎,前往烹饪站"
- "如果饭菜做好了,移到装盘站"
PocketFlow还支持批处理、异步执行和并行处理,适用于节点和流程。就是这样!这就是构建LLM应用程序所需的一切。没有不必要的抽象,没有复杂的架构------只有简单的构建块,可以组合成强大的系统。

Pocket Flow 核心图抽象
来源:https://pocketflow.substack.com/p/i-built-an-llm-framework-in-just
PocketFlow作者介绍
Zachary Huang:即将加入微软研究院AI前沿研究。目前从事大规模语言模型代理和系统的研究。喜欢构建、写作和制作梗图。之前经历:哥伦比亚大学博士,微软Gray Systems Lab,Databricks,2023年谷歌博士奖学金。

大佬不仅代码厉害还喜欢写通俗易懂的文章,最近看完了大佬的所有文章,感谢大佬的贡献,感兴趣的朋友也可以去看看。

地址:https://pocketflow.substack.com
PocketFlow实践
直接上手学习大佬提供的cookbook即可。
这里就演示一下几个入门的demo。
pocketflow-hello-world
定义Node与Flow:
python
from pocketflow import Node, Flow
from utils.call_llm import call_llm
# An example node and flow
# Please replace this with your own node and flow
class AnswerNode(Node):
def prep(self, shared):
# Read question from shared
return shared["question"]
def exec(self, question):
return call_llm(question)
def post(self, shared, prep_res, exec_res):
# Store the answer in shared
shared["answer"] = exec_res
answer_node = AnswerNode()
qa_flow = Flow(start=answer_node)
主脚本写了Shared Store:
python
from flow import qa_flow
# Example main function
# Please replace this with your own main function
def main():
shared = {
"question": "你是谁?",
"answer": None
}
qa_flow.run(shared)
print("Question:", shared["question"])
print("Answer:", shared["answer"])
if __name__ == "__main__":
main()
call_llm可以改成这样:
python
from openai import OpenAI
import os
def call_llm(prompt):
client = OpenAI(api_key="your api key",
base_url="https://api.siliconflow.cn/v1")
response = client.chat.completions.create(
model="Qwen/Qwen2.5-72B-Instruct",
messages=[{"role": "user", "content": prompt}],
temperature=0.7
)
return response.choices[0].message.content
if __name__ == "__main__":
# Test the LLM call
messages = [{"role": "user", "content": "In a few words, what's the meaning of life?"}]
response = call_llm(messages)
print(f"Prompt: {messages[0]['content']}")
print(f"Response: {response}")
效果:

pocketflow-chat
flowchart LR chat[ChatNode] -->|continue| chat

python
from pocketflow import Node, Flow
from utils import call_llm
class ChatNode(Node):
def prep(self, shared):
# Initialize messages if this is the first run
if "messages" not in shared:
shared["messages"] = []
print("Welcome to the chat! Type 'exit' to end the conversation.")
# Get user input
user_input = input("\nYou: ")
# Check if user wants to exit
if user_input.lower() == 'exit':
return None
# Add user message to history
shared["messages"].append({"role": "user", "content": user_input})
# Return all messages for the LLM
return shared["messages"]
def exec(self, messages):
if messages is None:
return None
# Call LLM with the entire conversation history
response = call_llm(messages)
return response
def post(self, shared, prep_res, exec_res):
if prep_res is None or exec_res is None:
print("\nGoodbye!")
return None # End the conversation
# Print the assistant's response
print(f"\nAssistant: {exec_res}")
# Add assistant message to history
shared["messages"].append({"role": "assistant", "content": exec_res})
# Loop back to continue the conversation
return "continue"
# Create the flow with self-loop
chat_node = ChatNode()
chat_node - "continue" >> chat_node # Loop back to continue conversation
flow = Flow(start=chat_node)
# Start the chat
if __name__ == "__main__":
shared = {}
flow.run(shared)
效果:

pocketflow-chat-guardrail
flowchart LR user[UserInputNode] -->|validate| guardrail[GuardrailNode] guardrail -->|retry| user guardrail -->|process| llm[LLMNode] llm -->|continue| user

- 一个
UserInputNode
,其exec
方法收集用户输入 - 一个
GuardrailNode
,用于验证查询是否与旅行相关,使用:- 基本验证检查(空输入、过短)
- 基于 LLM 的验证,以确定查询是否与旅行相关
- 一个
LLMNode
,使用带旅行顾问系统提示的LLM处理有效的旅行查询 - 流连接,在处理之前通过验证路由输入,并处理与旅行无关查询的重复尝试
python
from pocketflow import Node, Flow
from utils import call_llm
class UserInputNode(Node):
def prep(self, shared):
# Initialize messages if this is the first run
if "messages" not in shared:
shared["messages"] = []
print("Welcome to the Travel Advisor Chat! Type 'exit' to end the conversation.")
return None
def exec(self, _):
# Get user input
user_input = input("\nYou: ")
return user_input
def post(self, shared, prep_res, exec_res):
user_input = exec_res
# Check if user wants to exit
if user_input and user_input.lower() == 'exit':
print("\nGoodbye! Safe travels!")
return None # End the conversation
# Store user input in shared
shared["user_input"] = user_input
# Move to guardrail validation
return "validate"
class GuardrailNode(Node):
def prep(self, shared):
# Get the user input from shared data
user_input = shared.get("user_input", "")
return user_input
def exec(self, user_input):
# Basic validation checks
if not user_input or user_input.strip() == "":
return False, "Your query is empty. Please provide a travel-related question."
if len(user_input.strip()) < 3:
return False, "Your query is too short. Please provide more details about your travel question."
# LLM-based validation for travel topics
prompt = f"""
Evaluate if the following user query is related to travel advice, destinations, planning, or other travel topics.
The chat should ONLY answer travel-related questions and reject any off-topic, harmful, or inappropriate queries.
User query: {user_input}
Return your evaluation in YAML format:
```yaml
valid: true/false
reason: [Explain why the query is valid or invalid]
```"""
# Call LLM with the validation prompt
messages = [{"role": "user", "content": prompt}]
response = call_llm(messages)
# Extract YAML content
yaml_content = response.split("```yaml")[1].split("```")[0].strip() if "```yaml" in response else response
import yaml
result = yaml.safe_load(yaml_content)
assert result is not None, "Error: Invalid YAML format"
assert "valid" in result and "reason" in result, "Error: Invalid YAML format"
is_valid = result.get("valid", False)
reason = result.get("reason", "Missing reason in YAML response")
return is_valid, reason
def post(self, shared, prep_res, exec_res):
is_valid, message = exec_res
if not is_valid:
# Display error message to user
print(f"\nTravel Advisor: {message}")
# Skip LLM call and go back to user input
return "retry"
# Valid input, add to message history
shared["messages"].append({"role": "user", "content": shared["user_input"]})
# Proceed to LLM processing
return "process"
class LLMNode(Node):
def prep(self, shared):
# Add system message if not present
if not any(msg.get("role") == "system" for msg in shared["messages"]):
shared["messages"].insert(0, {
"role": "system",
"content": "You are a helpful travel advisor that provides information about destinations, travel planning, accommodations, transportation, activities, and other travel-related topics. Only respond to travel-related queries and keep responses informative and friendly. Your response are concise in 100 words."
})
# Return all messages for the LLM
return shared["messages"]
def exec(self, messages):
# Call LLM with the entire conversation history
response = call_llm(messages)
return response
def post(self, shared, prep_res, exec_res):
# Print the assistant's response
print(f"\nTravel Advisor: {exec_res}")
# Add assistant message to history
shared["messages"].append({"role": "assistant", "content": exec_res})
# Loop back to continue the conversation
return "continue"
# Create the flow with nodes and connections
user_input_node = UserInputNode()
guardrail_node = GuardrailNode()
llm_node = LLMNode()
# Create flow connections
user_input_node - "validate" >> guardrail_node
guardrail_node - "retry" >> user_input_node # Loop back if input is invalid
guardrail_node - "process" >> llm_node
llm_node - "continue" >> user_input_node # Continue conversation
flow = Flow(start=user_input_node)
# Start the chat
if __name__ == "__main__":
shared = {}
flow.run(shared)
效果:

最后
PocketFlow还有很多有趣的例子,感兴趣的朋友可以自己去试试!!
但是说实话PocketFlow的"易用性"还是不足的,没法像很多框架那样开箱即用,还是需要自己写很多代码的,但也就是它的小巧给了它很大的灵活性,开发者可以根据自己的想法灵活地去写程序。