本文附带视频讲解
【代码宇宙019】技术方案:蓝牙音响接入DeepSeek,解锁语音交互新玩法_哔哩哔哩_bilibili
目录
[大模型对话(技术: LangChain4j 接入 DeepSeek)](#大模型对话(技术: LangChain4j 接入 DeepSeek))
效果演示
核心逻辑

技术实现
大模型对话(技术: LangChain4j 接入 DeepSeek)
常用依赖都在这里(不是最简),DeepSeek 目前没有单独的依赖,用 open-ai 协议的依赖可以兼容,官网这里有说明:OpenAI Official SDK | LangChain4j

<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-open-ai</artifactId>
<version>1.0.0-beta3</version>
</dependency>
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j</artifactId>
<version>1.0.0-beta3</version>
</dependency>
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-spring-boot-starter</artifactId>
<version>1.0.0-beta3</version>
</dependency>
请求 ds 的核心类
java
package ai.voice.assistant.client;
/**
* @Author:超周到的程序员
* @Date:2025/4/25
*/
import ai.voice.assistant.config.DaemonProcess;
import ai.voice.assistant.service.llm.BaseChatClient;
import dev.langchain4j.data.message.ChatMessage;
import dev.langchain4j.data.message.SystemMessage;
import dev.langchain4j.data.message.UserMessage;
import dev.langchain4j.model.chat.response.ChatResponse;
import dev.langchain4j.model.chat.response.StreamingChatResponseHandler;
import dev.langchain4j.model.openai.OpenAiStreamingChatModel;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
import com.alibaba.fastjson.JSON;
@Component("deepSeekStreamClient")
public class DeepSeekStreamClient implements BaseChatClient {
private static final Logger LOGGER = LogManager.getLogger(DeepSeekStreamClient.class);
@Value("${certificate.llm.deepseek.key}")
private String key;
@Override
public String chat(String question) {
if (question.isBlank()) {
return "";
}
OpenAiStreamingChatModel model = OpenAiStreamingChatModel.builder()
.baseUrl("https://api.deepseek.com")
.apiKey(key)
.modelName("deepseek-chat")
.build();
List<ChatMessage> messages = new ArrayList<>();
messages.add(SystemMessage.from(prompt));
messages.add(UserMessage.from(question));
CountDownLatch countDownLatch = new CountDownLatch(1);
StringBuilder answerBuilder = new StringBuilder();
model.chat(messages, new StreamingChatResponseHandler() {
@Override
public void onPartialResponse(String answerSplice) {
// 语音生成(流式)
// voiceGenerateStreamService.process(new String[] {answerSplice});
// System.out.println("== answerSplice: " + answerSplice);
answerBuilder.append(answerSplice);
}
@Override
public void onCompleteResponse(ChatResponse chatResponse) {
countDownLatch.countDown();
}
@Override
public void onError(Throwable throwable) {
LOGGER.error("chat ds error, messages:{} err:", JSON.toJSON(messages), throwable);
}
});
try {
countDownLatch.await();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
String answer = answerBuilder.toString();
LOGGER.info("chat ds end, answer:{}", answer);
return answer;
}
}
语音识别(技术:阿里云-实时语音识别)
开发日志记录------
这里在我的场景下遇到了会话断连的问题:
-
问题场景:阿里的实时语音识别,第一次对话后 10s 如果不说话那么会断开连接(阿里侧避免过多无用连接占用),本次做的蓝牙音响诉求是让他一直保活不断开,有需要就和它对话并且不想要唤醒词
-
解决方式:因此这里用了 catch 断连异常后再次执行监听方法的方式来兼容这个问题,其实也可以定时发送一个空包过去,但是那样不确定会不会额外增加费用,另外也要处理同时发送空包和人进行语音对话的问题,最终生成的音频文件播放哪个的顺序问题
<dependency> <groupId>com.alibaba.nls</groupId> <artifactId>nls-sdk-tts</artifactId> <version>${ali-vioce-sdk.version}</version> </dependency> <dependency> <groupId>com.alibaba.nls</groupId> <artifactId>nls-sdk-transcriber</artifactId> <version>${ali-vioce-sdk.version}</version> </dependency>
java
package ai.voice.assistant.service.voice;
import ai.voice.assistant.config.VoiceConfig;
import ai.voice.assistant.service.llm.BaseChatClient;
import ai.voice.assistant.util.WavPlayerUtil;
import com.alibaba.nls.client.protocol.Constant;
import com.alibaba.nls.client.protocol.InputFormatEnum;
import com.alibaba.nls.client.protocol.NlsClient;
import com.alibaba.nls.client.protocol.SampleRateEnum;
import com.alibaba.nls.client.protocol.asr.SpeechTranscriber;
import com.alibaba.nls.client.protocol.asr.SpeechTranscriberListener;
import com.alibaba.nls.client.protocol.asr.SpeechTranscriberResponse;
import jakarta.annotation.PreDestroy;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.stereotype.Service;
import javax.sound.sampled.AudioFormat;
import javax.sound.sampled.AudioSystem;
import javax.sound.sampled.DataLine;
import javax.sound.sampled.TargetDataLine;
/**
* @Author:超周到的程序员
* @Date:2025/4/23 此示例演示了从麦克风采集语音并实时识别的过程
* (仅作演示,需用户根据实际情况实现)
*/
@Service
public class VoiceRecognitionService {
private static final Logger LOGGER = LoggerFactory.getLogger(VoiceRecognitionService.class);
@Autowired
private NlsClient client;
@Autowired
private VoiceConfig voiceConfig;
@Autowired
private VoiceGenerateService voiceGenerateService;
@Autowired
// @Qualifier("deepSeekStreamClient")
@Qualifier("deepSeekMemoryClient")
private BaseChatClient chatClient;
public SpeechTranscriberListener getTranscriberListener() {
SpeechTranscriberListener listener = new SpeechTranscriberListener() {
//识别出中间结果.服务端识别出一个字或词时会返回此消息.仅当setEnableIntermediateResult(true)时,才会有此类消息返回
@Override
public void onTranscriptionResultChange(SpeechTranscriberResponse response) {
// 重要提示: task_id很重要,是调用方和服务端通信的唯一ID标识,当遇到问题时,需要提供此task_id以便排查
LOGGER.info("name: {}, status: {}, index: {}, result: {}, time: {}",
response.getName(),
response.getStatus(),
response.getTransSentenceIndex(),
response.getTransSentenceText(),
response.getTransSentenceTime());
}
@Override
public void onTranscriberStart(SpeechTranscriberResponse response) {
LOGGER.info("task_id: {}, name: {}, status: {}",
response.getTaskId(),
response.getName(),
response.getStatus());
}
@Override
public void onSentenceBegin(SpeechTranscriberResponse response) {
LOGGER.info("task_id: {}, name: {}, status: {}",
response.getTaskId(),
response.getName(),
response.getStatus());
}
//识别出一句话.服务端会智能断句,当识别到一句话结束时会返回此消息
@Override
public void onSentenceEnd(SpeechTranscriberResponse response) {
LOGGER.info("name: {}, status: {}, index: {}, result: {}, confidence: {}, begin_time: {}, time: {}",
response.getName(),
response.getStatus(),
response.getTransSentenceIndex(),
response.getTransSentenceText(),
response.getConfidence(),
response.getSentenceBeginTime(),
response.getTransSentenceTime());
if (response.getName().equals(Constant.VALUE_NAME_ASR_SENTENCE_END)) {
if (response.getStatus() == 20000000) {
// 识别完一句话,调用大模型
String answer = chatClient.chat(response.getTransSentenceText());
voiceGenerateService.process(answer);
WavPlayerUtil.playWavFile("/Users/zhoulongchao/Desktop/file_code/project/p_me/ai-voice-assistant/tts_test.wav");
}
}
}
//识别完毕
@Override
public void onTranscriptionComplete(SpeechTranscriberResponse response) {
LOGGER.info("task_id: {}, name: {}, status: {}",
response.getTaskId(),
response.getName(),
response.getStatus());
}
@Override
public void onFail(SpeechTranscriberResponse response) {
// 重要提示: task_id很重要,是调用方和服务端通信的唯一ID标识,当遇到问题时,需要提供此task_id以便排查
LOGGER.info("语音识别 task_id: {}, status: {}, status_text: {}",
response.getTaskId(),
response.getStatus(),
response.getStatusText());
}
};
return listener;
}
public void process() {
SpeechTranscriber transcriber = null;
try {
// 创建实例,建立连接
transcriber = new SpeechTranscriber(client, getTranscriberListener());
transcriber.setAppKey(voiceConfig.getAppKey());
// 输入音频编码方式
transcriber.setFormat(InputFormatEnum.PCM);
// 输入音频采样率
transcriber.setSampleRate(SampleRateEnum.SAMPLE_RATE_16K);
// 是否返回中间识别结果
transcriber.setEnableIntermediateResult(true);
// 是否生成并返回标点符号
transcriber.setEnablePunctuation(true);
// 是否将返回结果规整化,比如将一百返回为100
transcriber.setEnableITN(false);
//此方法将以上参数设置序列化为json发送给服务端,并等待服务端确认
transcriber.start();
AudioFormat audioFormat = new AudioFormat(16000.0F, 16, 1, true, false);
DataLine.Info info = new DataLine.Info(TargetDataLine.class, audioFormat);
TargetDataLine targetDataLine = (TargetDataLine) AudioSystem.getLine(info);
targetDataLine.open(audioFormat);
targetDataLine.start();
System.out.println("You can speak now!");
int nByte = 0;
final int bufSize = 3200;
byte[] buffer = new byte[bufSize];
while ((nByte = targetDataLine.read(buffer, 0, bufSize)) > 0) {
// 直接发送麦克风数据流
transcriber.send(buffer, nByte);
}
transcriber.stop();
} catch (Exception e) {
LOGGER.info("语音识别 error: {}", e.getMessage());
// 临时兼容,用于保持连接在逻辑上不断开,否则默认10s不说话会自动断连
process();
} finally {
if (null != transcriber) {
transcriber.close();
}
}
}
@PreDestroy
public void shutdown() {
client.shutdown();
}
}
语音生成(技术:阿里云-语音生成)
开发日志记录------
- 非线程安全:在调用完阿里的语音生成能力后,得到了音频文件,和播放打通的方法是建立一个临时文件,生成和播放都路由到这个文件,因为这个项目只是个人方便分阶段单元测试用可以这么写,如果有多个客户端,那么这种方式就不是线程安全的
- 回答延迟:这里我是使用的普通版的语音合成能力,初次接入支持免费体验 3 个月,其实可以使用流式语音合成能力,是另一个 sdk,具体可见文档:流式文本语音合成使用说明_智能语音交互(ISI)-阿里云帮助中心 因为目前流式语音合成能力需要付费,因此没有接入流式,因此每次需要收集完 ds 大模型的回答流之后才可以进行语音生成,会有 8s 延迟
官网有 100 多种音色可以选:

<dependency>
<groupId>com.alibaba.nls</groupId>
<artifactId>nls-sdk-tts</artifactId>
<version>${ali-vioce-sdk.version}</version>
</dependency>
<dependency>
<groupId>com.alibaba.nls</groupId>
<artifactId>nls-sdk-transcriber</artifactId>
<version>${ali-vioce-sdk.version}</version>
</dependency>
java
package ai.voice.assistant.service.voice;
import ai.voice.assistant.config.VoiceConfig;
import com.alibaba.nls.client.protocol.NlsClient;
import com.alibaba.nls.client.protocol.OutputFormatEnum;
import com.alibaba.nls.client.protocol.SampleRateEnum;
import com.alibaba.nls.client.protocol.tts.;
import com.alibaba.nls.client.protocol.tts.SpeechSynthesizerListener;
import com.alibaba.nls.client.protocol.tts.SpeechSynthesizerResponse;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.util.concurrent.ScheduledExecutorService;
/**
* @Author:超周到的程序员
* @Date:2025/4/23
* 语音合成API调用
* 流式合成TTS
* 首包延迟计算
*/
@Service
public class VoiceGenerateService {
private static final Logger LOGGER = LoggerFactory.getLogger(VoiceGenerateService.class);
private static long startTime;
@Autowired
private VoiceConfig voiceConfig;
@Autowired
private NlsClient client;
private static SpeechSynthesizerListener getSynthesizerListener() {
SpeechSynthesizerListener listener = null;
try {
listener = new SpeechSynthesizerListener() {
File f = new File("tts_test.wav");
FileOutputStream fout = new FileOutputStream(f);
private boolean firstRecvBinary = true;
//语音合成结束
@Override
public void onComplete(SpeechSynthesizerResponse response) {
// TODO 当onComplete时表示所有TTS数据已经接收完成,因此这个是整个合成延迟,该延迟可能较大,未必满足实时场景
LOGGER.info("name:{} status:{} outputFile:{}", response.getStatus(), f.getAbsolutePath(), response.getName());
}
//语音合成的语音二进制数据
@Override
public void onMessage(ByteBuffer message) {
try {
if (firstRecvBinary) {
// TODO 此处是计算首包语音流的延迟,收到第一包语音流时,即可以进行语音播放,以提升响应速度(特别是实时交互场景下)
firstRecvBinary = false;
long now = System.currentTimeMillis();
LOGGER.info("tts first latency : " + (now - VoiceGenerateService.startTime) + " ms");
}
byte[] bytesArray = new byte[message.remaining()];
message.get(bytesArray, 0, bytesArray.length);
fout.write(bytesArray);
} catch (IOException e) {
e.printStackTrace();
}
}
@Override
public void onFail(SpeechSynthesizerResponse response) {
// TODO 重要提示: task_id很重要,是调用方和服务端通信的唯一ID标识,当遇到问题时,需要提供此task_id以便排查
LOGGER.info("语音合成 task_id: {}, status: {}, status_text: {}",
response.getTaskId(),
response.getStatus(),
response.getStatusText());
}
@Override
public void onMetaInfo(SpeechSynthesizerResponse response) {
// System.out.println("MetaInfo event:{}" + response.getTaskId());
}
};
} catch (Exception e) {
e.printStackTrace();
}
return listener;
}
public void process(String text) {
SpeechSynthesizer synthesizer = null;
try {
//创建实例,建立连接
synthesizer = new SpeechSynthesizer(client, getSynthesizerListener());
synthesizer.setAppKey(voiceConfig.getAppKey());
//设置返回音频的编码格式
synthesizer.setFormat(OutputFormatEnum.WAV);
//设置返回音频的采样率
synthesizer.setSampleRate(SampleRateEnum.SAMPLE_RATE_16K);
//发音人
synthesizer.setVoice("jielidou");
//语调,范围是-500~500,可选,默认是0
synthesizer.setPitchRate(50);
//语速,范围是-500~500,默认是0
synthesizer.setSpeechRate(30);
//设置用于语音合成的文本
synthesizer.setText(text);
synthesizer.addCustomedParam("enable_subtitle", true);
//此方法将以上参数设置序列化为json发送给服务端,并等待服务端确认
long start = System.currentTimeMillis();
synthesizer.start();
LOGGER.info("tts start latency " + (System.currentTimeMillis() - start) + " ms");
VoiceGenerateService.startTime = System.currentTimeMillis();
//等待语音合成结束
synthesizer.waitForComplete();
LOGGER.info("tts stop latency " + (System.currentTimeMillis() - start) + " ms");
} catch (Exception e) {
e.printStackTrace();
} finally {
//关闭连接
if (null != synthesizer) {
synthesizer.close();
}
}
}
public void shutdown() {
client.shutdown();
}
}