检索增强生成(RAG)是一种结合"向量检索"与"大语言模型"的技术路线,能在问答、摘要、文档分析等场景中大幅提升准确性与上下文利用率。
本文将基于 LangChain 构建一个完整的 RAG 流程,结合 PGVector
作为向量数据库,并用 LangGraph
构建状态图控制流程。
大语言模型初始化(llm_env.py)
我们首先使用 LangChain 提供的模型初始化器加载 gpt-4o-mini
模型,供后续问答使用。
python
# llm_env.py
from langchain.chat_models import init_chat_model
llm = init_chat_model("gpt-4o-mini", model_provider="openai")
RAG 主体流程(rag.py)
以下是整个 RAG 系统的主流程代码,主要包括:文档加载与切分、向量存储、状态图建模(analyze→retrieve→generate)、交互式问答。
python
# rag.py
import os
import sys
import time
sys.path.append(os.getcwd())
from llm_set import llm_env
from langchain_openai import OpenAIEmbeddings
from langchain_postgres import PGVector
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langgraph.graph import START, StateGraph
from typing_extensions import List, TypedDict, Annotated
from typing import Literal
from langgraph.checkpoint.postgres import PostgresSaver
from langgraph.graph.message import add_messages
from langchain_core.messages import HumanMessage, BaseMessage
from langchain_core.prompts import ChatPromptTemplate
# 初始化 LLM
llm = llm_env.llm
# 嵌入模型
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
# 向量数据库初始化
vector_store = PGVector(
embeddings=embeddings,
collection_name="my_rag_docs",
connection="postgresql+psycopg2://postgres:123456@localhost:5433/langchainvector",
)
# 加载网页内容
url = "https://python.langchain.com/docs/tutorials/qa_chat_history/"
loader = WebBaseLoader(web_paths=(url,))
docs = loader.load()
for doc in docs:
doc.metadata["source"] = url
# 文本分割
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=50)
all_splits = text_splitter.split_documents(docs)
# 添加 section 元数据
total_documents = len(all_splits)
third = total_documents // 3
for i, document in enumerate(all_splits):
if i < third:
document.metadata["section"] = "beginning"
elif i < 2 * third:
document.metadata["section"] = "middle"
else:
document.metadata["section"] = "end"
# 检查是否已存在向量
existing = vector_store.similarity_search(url, k=1, filter={"source": url})
if not existing:
_ = vector_store.add_documents(documents=all_splits)
print("文档向量化完成")
分析、检索与生成模块
接下来,我们定义三个函数构成 LangGraph
的流程:analyze → retrieve → generate。
python
class Search(TypedDict):
query: Annotated[str, "The question to be answered"]
section: Annotated[
Literal["beginning", "middle", "end"],
...,
"Section to query.",
]
class State(TypedDict):
messages: Annotated[list[BaseMessage], add_messages]
query: Search
context: List[Document]
answer: set
# 分析意图 → 获取 query 与 section
def analyze(state: State):
structtured_llm = llm.with_structured_output(Search)
query = structtured_llm.invoke(state["messages"])
return {"query": query}
# 相似度检索
def retrieve(state: State):
query = state["query"]
if hasattr(query, 'section'):
filter = {"section": query["section"]}
else:
filter = None
retrieved_docs = vector_store.similarity_search(query["query"], filter=filter)
return {"context": retrieved_docs}
生成模块基于 ChatPromptTemplate
和当前上下文生成回答:
python
prompt_template = ChatPromptTemplate.from_messages(
[
("system", "尽你所能按照上下文:{context},回答问题:{question}。"),
]
)
def generate(state: State):
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
messages = prompt_template.invoke({
"question": state["query"]["query"],
"context": docs_content,
})
response = llm.invoke(messages)
return {"answer": response.content, "messages": [response]}
构建 LangGraph 流程图
定义好状态结构后,我们构建 LangGraph
:
python
graph_builder = StateGraph(State).add_sequence([analyze, retrieve, generate])
graph_builder.add_edge(START, "analyze")
PG 数据库中保存中间状态(Checkpoint)
我们通过 PostgresSaver
记录每次对话的中间状态:
python
DB_URI = "postgresql://postgres:123456@localhost:5433/langchaindemo?sslmode=disable"
with PostgresSaver.from_conn_string(DB_URI) as checkpointer:
checkpointer.setup()
graph = graph_builder.compile(checkpointer=checkpointer)
input_thread_id = input("输入thread_id:")
time_str = time.strftime("%Y%m%d", time.localtime())
config = {"configurable": {"thread_id": f"rag-{time_str}-demo-{input_thread_id}"}}
print("输入问题,输入 exit 退出。")
while True:
query = input("你: ")
if query.strip().lower() == "exit":
break
input_messages = [HumanMessage(query)]
response = graph.invoke({"messages": input_messages}, config=config)
print(response["answer"])
效果

总结
本文通过 LangChain 的模块式能力,结合 PGVector 向量库与 LangGraph 有状态控制系统,实现了一个可交互、可持久化、支持多文档结构的 RAG 系统。其优势包括:
-
支持结构化提问理解(分区查询)
-
自动化分段与元数据标记
-
状态流追踪与恢复
-
可拓展支持文档上传、缓存优化、多用户配置