tensor向量按任意维度进行切片、拆分、组合

torch.index_select(input_tensor, 切片维度, 切片索引)

注意:切完之后,转onnx时会生成Gather节点;

torch自带切片操作

start : end : step:

范围前闭后开,将其放在哪个维度上,就对那个维度起作用

torch.cat((a, b) , dim)

已有的轴上拼接 矩阵,默认轴为0,给定轴的维度可以不同,其余轴的维度必须相同

三个操作的组合使用例子如下:

python 复制代码
import torch

x = torch.randn(1, 18, 4, 4)

# print("x:",x)
print("x.shape:",x.shape)

indices_cls = torch.tensor([2, 5, 8, 11, 14, 17])
indices_point = torch.tensor([0,1, 3,4, 6,7, 9,10, 12,13, 15,16])

kpt_point = torch.index_select(x, 1, indices_point)
kpt_cls = torch.index_select(x, 1, indices_cls)

print("kpt_point.shape:",kpt_point.shape)
print("kpt_cls.shape:",kpt_cls.shape)


x_2 = torch.cat([kpt_point[:,0:2:1,],kpt_cls[:,0:1:1,],kpt_point[:,2:4:1,],kpt_cls[:,1:2:1,],kpt_point[:,4:6:1,],kpt_cls[:,2:3:1,],
            kpt_point[:,6:8:1,],kpt_cls[:,3:4:1,],kpt_point[:,8:10:1,],kpt_cls[:,4:5:1,],kpt_point[:,10:12:1,],kpt_cls[:,5:6:1,]],1)

# print("x_2:",x_2)
print("x_2.shape:",x_2.shape)

打印组合前后tensor的输出形状和内容发现,前后一致:

python 复制代码
x.shape: torch.Size([1, 18, 4, 4])
kpt_point.shape: torch.Size([1, 12, 4, 4])
kpt_cls.shape: torch.Size([1, 6, 4, 4])   
x_2.shape: torch.Size([1, 18, 4, 4])   
相关推荐
Swizard8 小时前
别买树莓派了!3步教你在安卓手机上跑通 CPython + PaddleOCR,打造随身 AI 识别终端
python·ai·移动开发
weixin_421585019 小时前
PYTHON 迭代器1 - PEP-255
开发语言·python
hxxjxw10 小时前
Pytorch分布式训练/多卡训练(六) —— Expert Parallelism (MoE的特殊策略)
人工智能·pytorch·python
dagouaofei10 小时前
PPT AI生成实测报告:哪些工具值得长期使用?
人工智能·python·powerpoint
BoBoZz1911 小时前
ExtractPolyLinesFromPolyData切割一个三维模型(球体),并可视化切割后产生的多条等高线
python·vtk·图形渲染·图形处理
quikai198111 小时前
python练习第六组
java·前端·python
Trouville0111 小时前
Python中encode和decode的用法详解
开发语言·python
belldeep11 小时前
python:backtrader 使用指南
python·backtrader·量化回测
Dxy123931021611 小时前
Python的正则表达式如何做数据校验
开发语言·python·正则表达式