RAG实战基础篇/windows电脑快速部署qwen3:14B

现阶段,在本地部署ollama非常简单,准备好一个有GPU的电脑,十分钟轻松部署qwen3:14b。实现本地的大模型部署。

我这里为了方便起见,直接使用windows电脑下载一个ollama。

访问ollama GIthub地址:ollama开源地址

直接下载安装包:

双击安装;

安装完毕后,我们在windows终端中输入:ollama --version

出现版本号就安装成功了:

然后,我们用ollama在本地拉取一个qwen3:14b下来:

复制代码
ollama run qwen3:14b

我们等待完成

运行成功就可以对话了:

我们用nvidia-smi查看一下显存:

14B(int4量化)占用了11.5G的显存。

我们可以测试一下API是否能够正常调用:

我们请求本地接口:http://localhost:11434/v1/chat/completions

选择POST方法

请求体输入:

复制代码
{
    "model": "qwen3:14b",
    "messages": [{
    "role": "user",
    "content": "你现在是一个翻译,我发你一段文字,你翻译成日语。"
    },
    {
    "role": "assistant",
    "content": "好的"
    },
    {
    "role": "user",
    "content": "今天天气怎样?"
    }],
    "stream": false
}

可以看到本地大模型已经通了。

如果需要流式输出,将stream字段修改为true即可。

现在我们已经准备好本地的大模型环境了,后续我们将基于本地的大模型搭建一个小型RAG应用,实现自己个人知识库的问答。

相关推荐
AKAMAI1 小时前
Akamai Cloud客户案例 | CloudMinister借助Akamai实现多云转型
人工智能·云计算
小a杰.3 小时前
Flutter 与 AI 深度集成指南:从基础实现到高级应用
人工智能·flutter
colorknight3 小时前
数据编织-异构数据存储的自动化治理
数据仓库·人工智能·数据治理·数据湖·数据科学·数据编织·自动化治理
Lun3866buzha3 小时前
篮球场景目标检测与定位_YOLO11-RFPN实现详解
人工智能·目标检测·计算机视觉
janefir3 小时前
LangChain框架下DirectoryLoader使用报错zipfile.BadZipFile
人工智能·langchain
齐齐大魔王4 小时前
COCO 数据集
人工智能·机器学习
AI营销实验室5 小时前
原圈科技AI CRM系统赋能销售新未来,行业应用与创新点评
人工智能·科技
爱笑的眼睛115 小时前
超越MSE与交叉熵:深度解析损失函数的动态本质与高阶设计
java·人工智能·python·ai
tap.AI5 小时前
RAG系列(一) 架构基础与原理
人工智能·架构
北邮刘老师5 小时前
【智能体互联协议解析】北邮ACPs协议和代码与智能体互联AIP标准的关系
人工智能·大模型·智能体·智能体互联网