RAG实战基础篇/windows电脑快速部署qwen3:14B

现阶段,在本地部署ollama非常简单,准备好一个有GPU的电脑,十分钟轻松部署qwen3:14b。实现本地的大模型部署。

我这里为了方便起见,直接使用windows电脑下载一个ollama。

访问ollama GIthub地址:ollama开源地址

直接下载安装包:

双击安装;

安装完毕后,我们在windows终端中输入:ollama --version

出现版本号就安装成功了:

然后,我们用ollama在本地拉取一个qwen3:14b下来:

复制代码
ollama run qwen3:14b

我们等待完成

运行成功就可以对话了:

我们用nvidia-smi查看一下显存:

14B(int4量化)占用了11.5G的显存。

我们可以测试一下API是否能够正常调用:

我们请求本地接口:http://localhost:11434/v1/chat/completions

选择POST方法

请求体输入:

复制代码
{
    "model": "qwen3:14b",
    "messages": [{
    "role": "user",
    "content": "你现在是一个翻译,我发你一段文字,你翻译成日语。"
    },
    {
    "role": "assistant",
    "content": "好的"
    },
    {
    "role": "user",
    "content": "今天天气怎样?"
    }],
    "stream": false
}

可以看到本地大模型已经通了。

如果需要流式输出,将stream字段修改为true即可。

现在我们已经准备好本地的大模型环境了,后续我们将基于本地的大模型搭建一个小型RAG应用,实现自己个人知识库的问答。

相关推荐
mwq3012317 分钟前
旋转位置编码RoPE:用旋转艺术,解开 Transformer 的位置之谜
人工智能
赵得C21 分钟前
人工智能的未来之路:华为全栈技术链与AI Agent应用实践
人工智能·华为
糖葫芦君29 分钟前
25-GRPO IS SECRETLY A PROCESS REWARD MODEL
人工智能·大模型
俊男无期37 分钟前
【AI入门】通俗易懂讲AI(初稿)
人工智能
喜欢吃豆1 小时前
GraphRAG 技术教程:从核心概念到高级架构
人工智能·架构·大模型
王哈哈^_^1 小时前
YOLOv11视觉检测实战:安全距离测算全解析
人工智能·数码相机·算法·yolo·计算机视觉·目标跟踪·视觉检测
AI浩1 小时前
FeatEnHancer:在低光视觉下增强目标检测及其他任务的分层特征
人工智能·目标检测·目标跟踪
深度学习lover2 小时前
<数据集>yolo航拍交通目标识别数据集<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·航拍交通目标识别