如何识别SQL Server中需要添加索引的查询

引言

在数据库性能优化中,索引是提升查询速度最有效的手段之一。然而,不恰当的索引会降低写操作性能并增加存储开销。作为DBA,我们经常面临这样的挑战:如何精准定位哪些查询真正需要添加索引? 本文将分享几种实用的T-SQL查询,帮助您科学识别缺失索引,并提供最佳实践指南。

一、为什么需要索引优化?

  • 性能瓶颈:全表扫描(Table Scan)可能导致简单查询耗时数秒

  • 资源浪费:未使用索引的查询消耗额外CPU和I/O资源

  • 隐性成本:缺失索引可能使关键业务操作延迟数倍

据统计,合理添加索引可使查询性能提升10-100倍(来源:Microsoft SQL Server性能调优白皮书)

二、核心诊断查询

1. 缺失索引自动生成脚本

复制代码
SELECT TOP 10

   ROUND(migs.avg_total_user_cost * migs.avg_user_impact * (migs.user_seeks + migs.user_scans), 0) AS improvement_measure,

   DB_NAME(mid.database_id) AS database_name,

   OBJECT_NAME(mid.object_id) AS table_name,

   'CREATE INDEX [IX_' + OBJECT_NAME(mid.object_id) + '_'

       + REPLACE(REPLACE(REPLACE(ISNULL(mid.equality_columns, ''), ', ', '_'), '[', ''), ']', '') 

       + CASE WHEN mid.inequality_columns IS NOT NULL THEN '_' + REPLACE(REPLACE(REPLACE(mid.inequality_columns, ', ', '_'), '[', ''), ']', '') ELSE '' END 

       + '] ON ' + mid.statement 

       + ' (' + ISNULL(mid.equality_columns, '')

       + CASE WHEN mid.equality_columns IS NOT NULL AND mid.inequality_columns IS NOT NULL THEN ',' ELSE '' END

       + ISNULL(mid.inequality_columns, '') + ')' 

       + ISNULL(' INCLUDE (' + mid.included_columns + ')', '') AS create_index_statement,

   migs.user_seeks AS seek_operations,

   migs.avg_user_impact AS improvement_percent

FROM sys.dm_db_missing_index_group_stats AS migs

INNER JOIN sys.dm_db_missing_index_groups AS mig

   ON migs.group_handle = mig.index_group_handle

INNER JOIN sys.dm_db_missing_index_details AS mid

   ON mig.index_handle = mid.index_handle

WHERE mid.database_id = DB_ID()

ORDER BY improvement_measure DESC;

结果解读:

  • improvement_measure:综合改进指标(值越大优先级越高)

  • improvement_percent:预估查询性能提升百分比

  • seek_operations:该索引可能被使用的次数

2. 高开销扫描查询定位

复制代码
SELECT TOP 5

   qs.total_logical_reads / qs.execution_count AS avg_logical_reads,

   qs.execution_count,

   SUBSTRING(st.text, (qs.statement_start_offset/2) + 1,

       ((CASE qs.statement_end_offset

           WHEN -1 THEN DATALENGTH(st.text)

           ELSE qs.statement_end_offset

       END - qs.statement_start_offset)/2) + 1) AS query_text,

   qp.query_plan

FROM sys.dm_exec_query_stats AS qs

CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) AS st

CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) AS qp

WHERE qp.query_plan.exist('//RelOp[@PhysicalOp="Index Scan" or @PhysicalOp="Clustered Index Scan"]') = 1

ORDER BY avg_logical_reads DESC;

关键指标:

  • avg_logical_reads > 1000 表示严重I/O问题

  • 执行计划中出现 Index Scan 警告

3. 未索引的热点列检测

复制代码
SELECT TOP 10

   t.name AS TableName,

   c.name AS ColumnName,

   SUM(us.user_scans) AS total_scans

FROM sys.tables t

JOIN sys.columns c ON t.object_id = c.object_id

LEFT JOIN sys.index_columns ic 

   ON ic.object_id = t.object_id AND ic.column_id = c.column_id

LEFT JOIN sys.indexes i ON i.object_id = t.object_id AND i.index_id = ic.index_id

LEFT JOIN sys.dm_db_index_usage_stats us ON us.object_id = t.object_id AND us.index_id = i.index_id

WHERE i.index_id IS NULL  -- 无索引列

   AND us.user_scans > 0

GROUP BY t.name, c.name

ORDER BY total_scans DESC;

三、索引创建黄金法则

1. 索引设计原则

复制代码
-- 标准结构

CREATE INDEX IX_Table_KeyColumns

ON dbo.Table (Column1 ASC, Column2 DESC)

INCLUDE (Column3, Column4)

WITH (FILLFACTOR = 90); -- 针对频繁更新表

-- 筛选索引(针对热点数据)

CREATE INDEX IX_Orders_Active

ON dbo.Orders (OrderDate)

WHERE Status = 'Processing';

2. 四要四不要

| 该做的 | 避免的 |

|---------------------------|--------------------------|

| 优先选择高选择性列 | 在bit类型列建索引 |

| INCLUDED列放常用查询字段 | 创建重复功能索引 |

| 定期重建碎片率>30%的索引 | 盲目接受所有系统建议 |

| 测试环境验证性能提升 | 在生产环境直接创建索引 |

四、高级技巧

1. 索引使用监控

复制代码
SELECT 

   OBJECT_NAME(ix.object_id) AS TableName,

   ix.name AS IndexName,

   ix.type_desc AS IndexType,

   us.user_seeks,

   us.user_scans,

   us.user_lookups,

   us.user_updates

FROM sys.dm_db_index_usage_stats us

JOIN sys.indexes ix ON us.object_id = ix.object_id AND us.index_id = ix.index_id

WHERE us.database_id = DB_ID()

   AND OBJECTPROPERTY(us.object_id, 'IsUserTable') = 1;

决策依据:

  • user_updates > 10 * (user_seeks + user_scans) → 考虑删除索引

  • user_lookups 过高 → 需要优化INCLUDED列

2. 查询存储深度分析(SQL Server 2016+)

复制代码
SELECT 

   q.query_id,

   t.query_sql_text,

   rs.avg_duration,

   rs.avg_logical_io_reads,

   p.query_plan

FROM sys.query_store_query q

JOIN sys.query_store_query_text t ON q.query_text_id = t.query_text_id

JOIN sys.query_store_plan p ON q.query_id = p.query_id

JOIN sys.query_store_runtime_stats rs ON p.plan_id = rs.plan_id

WHERE rs.last_execution_time > DATEADD(DAY, -7, GETDATE())

ORDER BY rs.avg_logical_io_reads DESC;

五、避坑指南

  1. 索引覆盖陷阱:包含过多INCLUDED列会显著增大索引体积

  2. 参数嗅探问题:使用OPTION(RECOMPILE)解决参数敏感查询

  3. 锁升级风险:单索引超过8KB可能引发锁升级

  4. 统计信息滞后:开启AUTO_UPDATE_STATISTICS_ASYNC

结语

精准的索引优化需要持续监控和迭代调整。建议每周运行一次诊断查询,重点关注:

  • 改进潜力(improvement_measure) > 100,000 的索引

  • 逻辑读取(avg_logical_reads) > 5000 的查询

  • 扫描次数(total_scans) > 10,000 的热点列


附录工具推荐:

  1. sp_BlitzIndex - 索引分析神器

  2. Database Engine Tuning Advisor - 微软官方调优工具

  3. SolarWinds DPA - 商业级性能监控平台

通过科学诊断和谨慎实施,您可以将查询性能提升300%以上!欢迎在评论区分享您的索引优化实战经验。