前言
Hologres提供了一套高效的路径分析函数,包括路径明细计算和结果解析功能,能够帮助用户深入理解用户行为路径,并通过桑基图实现数据可视化。
一、核心功能
- 路径明细计算:精确记录用户在产品或功能中的完整访问路径
- 结果解析:对路径数据进行深度分析和指标计算
- 可视化支持:生成桑基图展示路径流量分布和转化情况
二、路径明细函数
1. 路径明细函数(path_analysis_detail
)
path_analysis_detail
函数用于将指定的事件数据深度解析并呈现为详细的路径结构。其输出结果以序列化数组的形式展现,内容详尽丰富,涵盖了路径的完整序列、路径内各个节点间的父子关系,以及每个路径步骤的执行耗时等关键信息。
语法
sql
path_analysis_detail(
event,
event_time,
start_event,
session_interval_sec,
path_depth,
path_offset,
is_reverse,
split_session_by_event)
参数说明

2. 路径漏斗函数(pad_funnel
)
pad_funnel函数用于获取特定事件组合构成的子路径信息。
语法
sql
pad_full_path(path_analysis_detail())
参数说明
path_analysis_detail():路径明细函数返回的路径明细的聚合结果数组。
返回值说明
pad_sub_path_left(unnested_pad_result)
pad_sub_path_right(unnested_pad_result)
pad_sub_index_left(unnested_pad_result)
pad_sub_index_right(unnested_pad_result)
pad_sub_cost(unnested_pad_result)
pad_sub_session(unnested_pad_result)

3. pad_session_path_array
pad_session_path_array
路径结果解析函数可以根据指定的会话ID,精准提取出该会话内发生的事件序列,并按照路径前缀进行有序组织。
语法
pad_session_path_array(path_analysis_detail(), session_idx)
参数说明
path_analysis_detail
():路径明细函数返回的路径明细的聚合结果数组。session_idx
:指定的会话序号。
三、使用示例
1. 准备数据
sql
--创建Extension,Extension是DB级别的函数,一个DB只需执行一次即可
CREATE extension flow_analysis;
--准备数据
CREATE TABLE path_demo(
uid text,
event text,
event_time timestamptz
);
INSERT INTO path_demo VALUES
('1','注册','2023-11-24 16:01:23+08'),
('1','登录','2023-11-24 16:02:10+08'),
('1','浏览','2023-11-24 16:02:15+08'),
('1','看直播','2023-11-24 16:03:10+08'),
('1','浏览','2023-11-24 16:03:15+08'),
('1','收藏','2023-11-24 16:04:20+08'),
('1','浏览','2023-11-24 16:07:21+08'),
('1','购买','2023-11-24 16:08:23+08'),
('1','退出','2023-11-24 16:09:05+08'),
('2','登录','2023-11-24 16:10:23+08'),
('2','购买','2023-11-24 16:12:23+08'),
('3','登录','2023-11-24 16:02:23+08'),
('3','浏览','2023-11-24 16:02:23+08'),
('3','收藏','2023-11-24 16:03:53+08'),
('3','看直播','2023-11-24 16:04:53+08'),
('4','登录','2023-11-24 16:02:23+08'),
('4','浏览','2023-11-24 16:03:53+08'),
('4','购买','2023-11-24 16:04:23+08'),
('4','看直播','2023-11-24 16:05:53+08'),
('4','取消下单','2023-11-24 16:06:53+08');
2. 使用案例
示例1:记录事件全部路径
- 按照时间切分SESSION:指定起始事件,按照时间切分SESSION,并设置SESSION间隔为180 s,匹配的序列长度为7。
sql
--按照时间切分:指定开始事件为"登录",SESSION时间间隔为180 s,匹配序列长度为7,并通过pad_full_path函数对结果解码
SELECT uid, pad_full_path(path_analysis_detail(event, event_time, '登录', 180, 7, 0, false)) AS ret FROM path_demo GROUP BY uid;

- 按照时间和事件切分SESSION:指定起始事件,SESSION时间间隔为180 s,匹配序列长度为7。
sql
--按照时间和事件切分:起始事件为"浏览",间隔时间为180 s,序列长度为7,并通过pad_full_path函数对结果解码
SELECT uid, pad_full_path(path_analysis_detail(event, event_time, '浏览', 180, 7, 0, false,TRUE)) AS ret FROM path_demo GROUP BY uid;

示例2:展开路径结果
sql
--将路径展开
SELECT uid, unnest(pad_full_path(path_analysis_detail(event, event_time, '登录', 180, 7, 0, false))) AS ret FROM path_demo GROUP BY uid;

示例3:展开子路径并获取每一步的路径明细
sql
--展开子路径
SELECT
uid,
pad_sub_session (ret) AS session_id,
pad_sub_path_left (ret) AS sub_path_left,
pad_sub_path_right (ret) AS sub_path_right,
pad_sub_index_left (ret) AS sub_index_left,
pad_sub_index_right (ret) AS sub_index_right,
pad_sub_cost (ret) AS sub_cost
FROM (
SELECT
uid,
unnest( path_analysis_detail (event, event_time, '登录', 180, 7, 0, FALSE)) AS ret
FROM
path_demo
GROUP BY
uid) a ;

同时我们也可以结合可视化工具,例如DataV的Echarts 桑基图,将计算结果形成可视化的桑基图,示例如下:

示例4:计算每个子路径的PV、UV(未去重)
sql
--计算每个子路径的uv/pv,未去重,如果需要去重,可以对uid做
SELECT
sub_index,
sub_path_left,
sub_path_right,
count(uid)
FROM (
SELECT
uid,
pad_sub_path_left (ret) AS sub_path_left,
pad_sub_path_right (ret) AS sub_path_right,
pad_sub_index_right (ret) AS sub_index
FROM (
SELECT
uid,
unnest(path_analysis_detail (event, event_time, '登录', 180, 7, 0, FALSE)) AS ret
FROM
path_demo
GROUP BY
uid) a) a
GROUP BY
sub_index,
sub_path_left,
sub_path_right
ORDER BY
sub_index,
sub_path_left,
sub_path_right;

示例5:计算每个子路径的平均耗时
sql
--计算子路径的平均耗时
SELECT
sub_path_left,
sub_path_right,
avg(sub_cost)
FROM (
SELECT
uid,
pad_sub_path_left (ret) AS sub_path_left,
pad_sub_path_right (ret) AS sub_path_right,
pad_sub_cost (ret) AS sub_cost
FROM (
SELECT
uid,
unnest(path_analysis_detail (event, event_time, '登录', 180, 7, 0, FALSE)) AS ret
FROM
path_demo
GROUP BY
uid) a) a
GROUP BY
sub_path_left,
sub_path_right
ORDER BY
sub_path_left,
sub_path_right;

示例6:会话路径与子路径明细关联
sql
`--会话路径与子路径关联
select
uid,
pad_sub_session(item) as session_id,
full_path [pad_sub_session(item)+1] as full_path,
pad_sub_path_left(item) as sub_path_left,
pad_sub_path_right(item) as sub_path_right,
pad_sub_index_right(item) as sub_idx,
pad_sub_cost(item) as sub_cost
from
(
select
uid,
unnest(ret) as item,
pad_full_path(ret) as full_path
from
(
select
uid,
path_analysis_detail(event, event_time, '登录', 180, 7, 0, false) as ret
from
path_demo
group by
uid
) a
) a;

示例7:查看指定的部分路径明细
sql
--通过pad_funnel函数可以查看指定的部分路径明细,示例只看Browse>purchase 的转化情况,查看对应的明细,或者子路径情况
SELECT uid, pad_full_path(pad_funnel(path_analysis_detail(event, event_time, '登录', 180, 7, 0, false), array['登录', '购买'])) AS ret FROM path_demo GROUP BY uid;

四、结束语
通过路径分析,可以清晰地了解产品每个关键功能的访问情况,进一步辅助运营和产品进行下一步的业务策略优化和产品迭代,帮助业务更加健康地成长。
相关内容
Hologres实战:优雅处理字符串数组
https://blog.csdn.net/weixin_43932609/article/details/149934590
开启数据湖 "宝匣"
https://blog.csdn.net/weixin_43932609/article/details/144406593
数据仓库:智控数据中枢
https://blog.csdn.net/weixin_43932609/article/details/144393368
湖仓一体:数据未来之路
https://blog.csdn.net/weixin_43932609/article/details/144433084
=========================================================
人生得意须尽欢,莫使金樽空对月!
__一个热爱说唱的程序员。
今日份推荐音乐:单依纯《李白 (live)》
=========================================================