Swift Concurrency:彻底告别“线程思维”,拥抱 Task 的世界

原文:Threads vs. Tasks in Swift Concurrency 链接:www.avanderlee.com/concurrency...

前言:别再问"它跑在哪个线程?"

在 GCD 时代,我们习惯用 DispatchQueue.global(qos: .background).async { ... }DispatchQueue.main.async { ... } 来显式地把任务丢到指定线程。久而久之,形成了一种"线程思维":

"这段代码很重,我要放到子线程。"

"这行 UI 代码必须回到主线程。"

Swift Concurrency(async/await + Task)出现以后,这套思维需要升级------系统帮你决定"跑在哪个线程"。我们只需关心"任务(Task)"本身。

线程(Thread)到底是什么?

  • 系统级资源:由操作系统调度,创建、销毁、切换开销大。
  • 并发手段:多线程可以让多条指令流同时跑。
  • 痛点:数量一多,内存占用高、上下文切换频繁、优先级反转。

Swift Concurrency 的目标就是让我们 不再直接面对线程。

Task:比线程更高级的抽象

  • 一个 Task = 一段异步工作单元。
  • 不绑定线程:Task 被放进 合作线程池(cooperative thread pool),由运行时动态分配到"刚好够用"的线程上。
  • 运行机制:
    1. 线程数量 ≈ CPU 核心数。
    2. 遇到 await(挂起点)时,当前线程被释放,可立即执行其他 Task。
    3. 挂起的 Task 稍后可能在另一条线程恢复。

代码示范:Task 与线程的"若即若离"

swift 复制代码
struct ThreadingDemonstrator {
    private func firstTask() async throws {
        print("Task 1 started on thread: \(Thread.current)")
        try await Task.sleep(for: .seconds(2))   // 挂起点
        print("Task 1 resumed on thread: \(Thread.current)")
    }

    private func secondTask() async {
        print("Task 2 started on thread: \(Thread.current)")
    }

    func demonstrate() {
        Task {
            try await firstTask()
        }
        Task {
            await secondTask()
        }
    }
}

典型输出(每次都可能不同):

arduino 复制代码
Task 1 started on thread: <NSThread: 0x600001752200>{number = 3, name = (null)}
Task 2 started on thread: <NSThread: 0x6000017b03c0>{number = 8, name = (null)}
Task 1 resumed on thread: <NSThread: 0x60000176ecc0>{number = 7, name = (null)}

解读:

  • Task 1 在 await 时释放了线程 3;
  • Task 2 趁机用到了线程 8;
  • Task 1 恢复时,被安排到线程 7------前后线程可以不同。

线程爆炸(Thread Explosion)还会发生吗?

场景 GCD Swift Concurrency
同时发起 1000 个网络请求 可能创建 1000 条线程 → 内存暴涨、调度爆炸 最多 CPU 核心数条线程,其余任务挂起 → 无爆炸
阻塞线程 线程真被 block,CPU 空转 用 continuation 挂起,线程立刻服务别的任务

因此,线程爆炸在 Swift Concurrency 中几乎不存在。

线程更少,性能反而更好?

  • GCD 误区:线程越多,并发越高。
  • 真相:线程 > CPU 核心时,上下文切换成本激增。
  • Swift Concurrency 做法
    • 线程数 = 核心数;
    • 用挂起/恢复代替阻塞;
    • CPU 始终在跑有效指令,切换开销极低。

实测常见场景(CPU-bound & I/O-bound)下,Swift Concurrency 往往优于 GCD。

三个常见误区

误区 正解
每个 Task 会新开一条线程 Task 与线程是多对一,由调度器动态复用
await会阻塞当前线程 await会挂起任务并释放线程
Task 一定按创建顺序执行 执行顺序不保证,取决于挂起点与调度策略

思维升级:从"线程思维"到"任务思维"

线程思维 任务思维
"这段代码要在子线程跑" "这段代码是异步任务,系统会调度"
"回到主线程刷新 UI" "用 @MainActorMainActor.run标记主界面任务"
"我怕线程太多" "线程数系统自动管理,我专注业务逻辑"

小结

  1. 线程是低层、昂贵的系统资源。
  2. Task 是高层、轻量的异步工作单元。
  3. Swift Concurrency 通过合作线程池 + 挂起/恢复机制,让线程数始终保持在"刚好够用",既避免线程爆炸,又提升性能。
  4. 开发者应把注意力从"线程"转向"任务"与"挂起点"。

当你下次再想问"这段代码跑在哪个线程?"时,提醒自己:

"别管线程,写正确的 Task 就行。"

相关推荐
HarderCoder18 小时前
Swift 中的不透明类型与装箱协议类型:概念、区别与实践
swift
HarderCoder18 小时前
Swift 泛型深度指南 ——从“交换两个值”到“通用容器”的代码复用之路
swift
东坡肘子19 小时前
惊险但幸运,两次!| 肘子的 Swift 周报 #0109
人工智能·swiftui·swift
胖虎119 小时前
Swift项目生成Framework流程以及与OC的区别
framework·swift·1024程序员节·swift framework
songgeb1 天前
What Auto Layout Doesn’t Allow
swift
YGGP2 天前
【Swift】LeetCode 240.搜索二维矩阵 II
swift
YGGP2 天前
【Swift】LeetCode 73. 矩阵置零
swift
非专业程序员Ping3 天前
HarfBuzz 实战:五大核心API 实例详解【附iOS/Swift实战示例】
android·ios·swift
Swift社区4 天前
LeetCode 409 - 最长回文串 | Swift 实战题解
算法·leetcode·swift
YGGP7 天前
【Swift】LeetCode 54. 螺旋矩阵
swift