Zynq中级开发七项必修课-第三课:S_AXI_GP0 主动访问 PS 地址空间
目标
- 1.0 编写 AXI-Lite Master:按键计数 → 写入 PS 内存
- 1.1 PL 触发中断 → PS 响应并串口打印按键计数值
BD图
axi_lite_master.v
verilog
复制代码
// =====================================================
// AXI4-Lite Simple Master (single-shot, non-pipelined)
// - Pure Verilog-2001
// - Robust to 0-cycle / very-fast responses (no miss)
// - Works with SmartConnect / Zynq PS S_AXI_GP*
// =====================================================
module axi_lite_master #(
parameter ADDR_WIDTH = 32,
parameter DATA_WIDTH = 32
)(
input wire clk,
input wire rst_n, // active-low reset, sync to clk
// ---------------- AXI4-Lite Master IF ----------------
// Write address
output reg [ADDR_WIDTH-1:0] m_axi_awaddr,
output reg [2:0] m_axi_awprot,
output reg m_axi_awvalid,
input wire m_axi_awready,
// Write data
output reg [DATA_WIDTH-1:0] m_axi_wdata,
output reg [(DATA_WIDTH/8)-1:0] m_axi_wstrb,
output reg m_axi_wvalid,
input wire m_axi_wready,
// Write response
input wire [1:0] m_axi_bresp, // 2'b00=OKAY
input wire m_axi_bvalid,
output reg m_axi_bready,
// Read address
output reg [ADDR_WIDTH-1:0] m_axi_araddr,
output reg [2:0] m_axi_arprot,
output reg m_axi_arvalid,
input wire m_axi_arready,
// Read data/resp
input wire [DATA_WIDTH-1:0] m_axi_rdata,
input wire [1:0] m_axi_rresp, // 2'b00=OKAY
input wire m_axi_rvalid,
output reg m_axi_rready,
// ---------------- User Side (single request at a time) ---------------
input wire write_req, // pulse: 1clk = start one write
input wire [ADDR_WIDTH-1:0] write_addr,
input wire [DATA_WIDTH-1:0] write_data,
output reg write_done, // pulse: 1clk when write completes
output reg write_err, // latched for 1clk at done
input wire read_req, // pulse: 1clk = start one read
input wire [ADDR_WIDTH-1:0] read_addr,
output reg [DATA_WIDTH-1:0] read_data,
output reg read_done, // pulse: 1clk when read completes
output reg read_err, // latched for 1clk at done
output wire busy // 1=there's an in-flight txn
);
// ---------------- Edge detect to make interface tolerant to level inputs
reg wr_req_d, rd_req_d;
wire wr_pulse = write_req & ~wr_req_d;
wire rd_pulse = read_req & ~rd_req_d;
// In-flight markers (no full FSM needed)
wire wr_inflight = m_axi_awvalid | m_axi_wvalid | m_axi_bready;
wire rd_inflight = m_axi_arvalid | m_axi_rready;
assign busy = wr_inflight | rd_inflight;
// ---------------- Registers
localparam [2:0] PROT_DEFAULT = 3'b000;
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
wr_req_d <= 1'b0;
rd_req_d <= 1'b0;
m_axi_awaddr <= {ADDR_WIDTH{1'b0}};
m_axi_awprot <= PROT_DEFAULT;
m_axi_awvalid <= 1'b0;
m_axi_wdata <= {DATA_WIDTH{1'b0}};
m_axi_wstrb <= {(DATA_WIDTH/8){1'b0}};
m_axi_wvalid <= 1'b0;
m_axi_bready <= 1'b0;
m_axi_araddr <= {ADDR_WIDTH{1'b0}};
m_axi_arprot <= PROT_DEFAULT;
m_axi_arvalid <= 1'b0;
m_axi_rready <= 1'b0;
write_done <= 1'b0;
write_err <= 1'b0;
read_done <= 1'b0;
read_err <= 1'b0;
read_data <= {DATA_WIDTH{1'b0}};
end else begin
// sample requests for edge detection
wr_req_d <= write_req;
rd_req_d <= read_req;
// default: clear 1-cycle pulses
write_done <= 1'b0;
read_done <= 1'b0;
// ============================================================
// WRITE: fire when wr_pulse && !busy
// - AW/W raised together; BREADY asserted immediately
// ============================================================
if (wr_pulse && !busy) begin
m_axi_awaddr <= write_addr;
m_axi_awprot <= PROT_DEFAULT;
m_axi_awvalid <= 1'b1;
m_axi_wdata <= write_data;
m_axi_wstrb <= {(DATA_WIDTH/8){1'b1}};
m_axi_wvalid <= 1'b1;
m_axi_bready <= 1'b1; // ready to accept response ASAP
write_err <= 1'b0; // clear error for new txn
end
// AW handshake completes -> drop AWVALID
if (m_axi_awvalid && m_axi_awready)
m_axi_awvalid <= 1'b0;
// W handshake completes -> drop WVALID
if (m_axi_wvalid && m_axi_wready)
m_axi_wvalid <= 1'b0;
// B response: complete write on any cycle handshake occurs
if (m_axi_bvalid && m_axi_bready) begin
m_axi_bready <= 1'b0;
write_done <= 1'b1;
write_err <= (m_axi_bresp != 2'b00); // OKAY=00
end
// ============================================================
// READ: fire when rd_pulse && !busy
// - AR raised; RREADY asserted immediately
// ============================================================
if (rd_pulse && !busy) begin
m_axi_araddr <= read_addr;
m_axi_arprot <= PROT_DEFAULT;
m_axi_arvalid <= 1'b1;
m_axi_rready <= 1'b1; // be ready for 0-cycle data
read_err <= 1'b0;
end
// AR handshake completes -> drop ARVALID
if (m_axi_arvalid && m_axi_arready)
m_axi_arvalid <= 1'b0;
// R data: complete read on any cycle handshake occurs
if (m_axi_rvalid && m_axi_rready) begin
m_axi_rready <= 1'b0;
read_data <= m_axi_rdata;
read_done <= 1'b1;
read_err <= (m_axi_rresp != 2'b00); // OKAY=00
end
end
end
endmodule
key_debounce.v
verilog
复制代码
// ============================================================================
// Module name : key_debounce
// Author : ming
// Description : 按键消抖模块
// - 按键持续按下超过设定时间后,输出一个时钟周期脉冲
// - 累计按键按下次数
// Parameters : P_CLK_FREQ_MHZ - 输入时钟频率 (MHz)
// P_DEBOUNCE_MS - 消抖时间 (ms)
// L_CNT_WIDTH - 计数器位宽
// ============================================================================
module key_debounce
#(
parameter P_CLK_FREQ_MHZ = 50, // 时钟频率 MHz
parameter P_DEBOUNCE_MS = 20, // 消抖时间 ms
parameter L_CNT_WIDTH = 32 // 计数器位宽
)
(
input wire i_clk, // 系统时钟
input wire i_rst_n, // 全局复位,低有效
input wire i_key, // 按键输入(低有效)
output reg o_key_pulse, // 消抖脉冲
output reg [31:0] o_key_pulse_cnt // 按键次数
);
// 根据时钟频率和消抖时间计算最大计数值
localparam L_MAX_CNT = P_CLK_FREQ_MHZ * 1000 * P_DEBOUNCE_MS;
reg [L_CNT_WIDTH-1:0] r_cnt;
// 计数器:按键按下计时
always@(posedge i_clk or negedge i_rst_n)
if(!i_rst_n)
r_cnt <= {(L_CNT_WIDTH+1){1'b0}};
else if(i_key == 1)
r_cnt <= {(L_CNT_WIDTH+1){1'b0}};
else if(i_key == 0 && r_cnt < L_MAX_CNT-1)
r_cnt <= r_cnt + 1'b1;
else
r_cnt <= r_cnt;
// 输出脉冲:稳定按下超过设定时间,输出 1 个时钟周期脉冲
always@(posedge i_clk or negedge i_rst_n)
if(!i_rst_n) begin
o_key_pulse <= 1'b0;
o_key_pulse_cnt <= 32'd0;
end else if(r_cnt == L_MAX_CNT-2) begin
o_key_pulse <= 1'b1;
o_key_pulse_cnt <= o_key_pulse_cnt + 1;
end else
o_key_pulse <= 1'b0;
endmodule
pulse_rise_counter.v
verilog
复制代码
`timescale 1ns/1ps
// pulse_rise_counter.v --- 上升沿计数器(简洁版)
// - 记录 i_sig 的上升沿个数到 o_count
// - 含两级同步,适合异步来源(IO/外设)
// - 计数回卷(溢出后从 0 重新计)
//
// 端口:
// i_clk : 时钟
// i_rst_n : 低有效复位
// i_sig : 需要计数的脉冲/电平信号
// o_count : 上升沿累计计数
module pulse_rise_counter #(
parameter integer P_WIDTH = 32
)(
input wire i_clk,
input wire i_rst_n,
input wire i_sig,
output reg [P_WIDTH-1:0] o_count
);
// 两级同步,避免亚稳态
reg r_sync1, r_sync2;
always @(posedge i_clk or negedge i_rst_n) begin
if (!i_rst_n) begin
r_sync1 <= 1'b0;
r_sync2 <= 1'b0;
o_count <= {P_WIDTH{1'b0}};
end else begin
r_sync1 <= i_sig;
r_sync2 <= r_sync1;
// 上升沿检测:前一拍0,这一拍1
if (r_sync1 & ~r_sync2)
o_count <= o_count + 1'b1;
end
end
endmodule
blink_led.v
verilog
复制代码
module blink_led #(
parameter P_CLK_FREQ = 50_000_000, // 时钟频率
parameter P_BLINK_HZ = 1 // 闪烁频率
)(
input i_clk,
input i_rst_n,
output o_led
);
localparam integer L_HALF_CYCLES = P_CLK_FREQ / (2 * P_BLINK_HZ);
reg [$clog2(L_HALF_CYCLES):0] r_cnt = 0;
reg r_led;
assign o_led = r_led;
always @(posedge i_clk or negedge i_rst_n) begin
if (!i_rst_n) begin
r_cnt <= 0;
r_led <= 0;
end else begin
if (r_cnt == L_HALF_CYCLES - 1) begin
r_cnt <= 0;
r_led <= ~r_led;
end else begin
r_cnt <= r_cnt + 1;
end
end
end
endmodule
system.xdc
shell
复制代码
#开发板约束文件
#时序约束
create_clock -period 20.000 -name PL_GCLK [get_ports PL_GCLK]
#IO引脚约束
#----------------------系统时钟---------------------------
set_property -dict {PACKAGE_PIN U18 IOSTANDARD LVCMOS33} [get_ports PL_GCLK]
#----------------------系统复位---------------------------
set_property -dict {PACKAGE_PIN N16 IOSTANDARD LVCMOS33} [get_ports PL_RESET]
#----------------------PL_KEY---------------------------
set_property -dict {PACKAGE_PIN L14 IOSTANDARD LVCMOS33} [get_ports KEY0]
set_property -dict {PACKAGE_PIN K16 IOSTANDARD LVCMOS33} [get_ports KEY1]
#----------------------PL_LED---------------------------
#底板
set_property -dict {PACKAGE_PIN H15 IOSTANDARD LVCMOS33} [get_ports LED0]
set_property -dict {PACKAGE_PIN L15 IOSTANDARD LVCMOS33} [get_ports LED1]
#----------------------PL_UART(RS232)/RS485---------------------------
set_property -dict {PACKAGE_PIN K14 IOSTANDARD LVCMOS33} [get_ports PL_UART_RXD]
set_property -dict {PACKAGE_PIN M15 IOSTANDARD LVCMOS33} [get_ports PL_UART_TXD]
PS 裸机测试
c
复制代码
#include "xil_io.h"
#include "xil_mmu.h"
#include "xil_printf.h"
#include "xparameters.h"
#include "xscugic.h"
#include <stdio.h>
//共享内存基地址
#define SHARE_MEM_BASE 0x01000000U
//S_AXI_GP0 接口写入的集地址
#define BASE_ADDR 0x01000000U
#define MAX_INDEX 30
// ======= PL中断号 =======
#define PL_IRQ_ID61 61
#define GIC_DEVICE_ID XPAR_PS7_SCUGIC_0_DEVICE_ID
// GIC 控制器实例
XScuGic intc;
// =============================
// PL 中断服务函数
// 对应 PL 触发的 IRQ 信号 (IRQ_F2P)
// =============================
static void PL_IRQHandler(void *ctx) {
uintptr_t irq_src = (uintptr_t)ctx;
static int irq_cnt=0;
irq_cnt++;
xil_printf("PL%d triggered %d!\r\n",irq_src,irq_cnt);
int regInx=0;
u32 read_val = Xil_In32(BASE_ADDR + 4 * regInx);
xil_printf("[r %d] = 0x%08X / %u\r\n", regInx, read_val, read_val);
}
// =============================
// 中断控制器初始化函数
// 配置 GIC,用于使能 PL 触发的中断
// =============================
static int IRQ_Init(void)
{
int status;
XScuGic_Config *cfg = XScuGic_LookupConfig(GIC_DEVICE_ID);
if (!cfg) return XST_FAILURE;
// 1) 初始化 GIC(只此一次)
status = XScuGic_CfgInitialize(&intc, cfg, cfg->CpuBaseAddress);
if (status != XST_SUCCESS) return status;
// 2) 顶层异常框架(只此一次)
Xil_ExceptionInit();
Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT,
(Xil_ExceptionHandler)XScuGic_InterruptHandler,
&intc);
// 3) 触发方式 & 优先级(可选但推荐;数值越小优先级越高)
// PL 直连 IRQ_F2P 通常上升沿(0x3),示例优先级 0x80(高于 UART)
XScuGic_SetPriorityTriggerType(&intc, PL_IRQ_ID61, 0x80, 0x3);
// 4) 连接中断源
status = XScuGic_Connect(&intc, PL_IRQ_ID61,
(Xil_ExceptionHandler)PL_IRQHandler, (void*)0);
if (status != XST_SUCCESS) return status;
// 5) 使能
XScuGic_Enable(&intc, PL_IRQ_ID61);
// 6) 全局开中断(只此一次)
Xil_ExceptionEnable();
return XST_SUCCESS;
}
int main() {
xil_printf("S_AXI_GP0 test.\n");
//直接把 Cortex-A9 的数据缓存(D-Cache)全局关闭。
// Xil_DCacheDisable();
//把指定的地址段(通常 1MB 对齐)标记为 "非缓存、可共享" 内存
Xil_SetTlbAttributes(SHARE_MEM_BASE, NORM_NONCACHE | SHAREABLE);
IRQ_Init();
char cmd;
int index;
u32 value;
while (1) {
xil_printf("> ");
if (scanf(" %c", &cmd) != 1)
continue;
switch (cmd)
{
case 'r':
if (scanf("%d", &index) == 1)
{
if (index < 0 || index > MAX_INDEX)
{
xil_printf("Error: index out of range [0 ~ %d]\r\n", MAX_INDEX);
while (getchar() != '\n');
continue;
}
u32 read_val = Xil_In32(BASE_ADDR + 4 * index);
xil_printf("[r %d] = 0x%08X / %u\r\n", index, read_val, read_val);
}
else
{
xil_printf("Invalid input. Use: r <index>\r\n");
while (getchar() != '\n');
}
break;
case 'w':
if (scanf("%d %u", &index, &value) == 2)
{
if (index < 0 || index > MAX_INDEX)
{
xil_printf("Error: index out of range [0 ~ %d]\r\n", MAX_INDEX);
while (getchar() != '\n');
continue;
}
Xil_Out32(BASE_ADDR + 4 * index, value);
xil_printf("[w %d] = 0x%08X / %u\r\n", index, value, value);
}
else
{
xil_printf("Invalid input. Use: w <index> <value>\r\n");
while (getchar() != '\n');
}
break;
case 'l':{
break;
}
default:
xil_printf("Unknown command '%c'. Use 'r' or 'w'.\r\n", cmd);
while (getchar() != '\n');
break;
}
}
return 0;
}
测试结果