自编PCAP分析器——使用 PyShark 分析网络流量的脚本

作为一名网络安全工程师,是常常需要自己编写一些实用的脚本的。下面是一个使用 PyShark 库编写的网络流量分析脚本,专为网络安全工程师设计。这个脚本可以分析 HTTP 和 TCP 流量,并提取关键信息用于安全分析。

python 复制代码
#!/usr/bin/env python3
"""
网络流量分析工具 - 使用 PyShark 分析 pcap 文件
适用于网络安全工程师进行流量分析和安全审计
"""

import pyshark
import argparse
from collections import defaultdict
import json
import sys

class TrafficAnalyzer:
    def __init__(self, pcap_file):
        self.pcap_file = pcap_file
        self.http_flows = defaultdict(list)
        self.tcp_flows = defaultdict(list)
        self.suspicious_activities = []
    
    def analyze_http_traffic(self):
        """分析 HTTP 流量"""
        print("[+] 分析 HTTP 流量...")
        try:
            # 创建显示过滤器,只捕获 HTTP 流量
            cap = pyshark.FileCapture(self.pcap_file, display_filter='http')
            
            for packet in cap:
                try:
                    if hasattr(packet, 'http'):
                        http_layer = packet.http
                        ip_layer = packet.ip
                        
                        # 提取 HTTP 请求基本信息
                        flow_key = f"{ip_layer.src}:{packet.tcp.srcport} -> {ip_layer.dst}:{packet.tcp.dstport}"
                        
                        http_info = {
                            'timestamp': packet.sniff_time,
                            'method': getattr(http_layer, 'request_method', 'N/A'),
                            'uri': getattr(http_layer, 'request_uri', 'N/A'),
                            'host': getattr(http_layer, 'host', 'N/A'),
                            'user_agent': getattr(http_layer, 'user_agent', 'N/A'),
                            'status_code': getattr(http_layer, 'response_code', 'N/A'),
                            'content_type': getattr(http_layer, 'content_type', 'N/A'),
                            'length': packet.length
                        }
                        
                        self.http_flows[flow_key].append(http_info)
                        
                        # 检测可疑的 HTTP 活动
                        self._detect_suspicious_http(http_info, flow_key)
                        
                except AttributeError as e:
                    # 忽略没有 HTTP 层的包
                    continue
                    
        except Exception as e:
            print(f"[-] 分析 HTTP 流量时出错: {e}")
    
    def analyze_tcp_traffic(self):
        """分析 TCP 流量"""
        print("[+] 分析 TCP 流量...")
        try:
            # 创建显示过滤器,只捕获 TCP 流量
            cap = pyshark.FileCapture(self.pcap_file, display_filter='tcp')
            
            for packet in cap:
                try:
                    if hasattr(packet, 'tcp'):
                        tcp_layer = packet.tcp
                        ip_layer = packet.ip
                        
                        # 提取 TCP 流基本信息
                        flow_key = f"{ip_layer.src}:{tcp_layer.srcport} -> {ip_layer.dst}:{tcp_layer.dstport}"
                        
                        tcp_info = {
                            'timestamp': packet.sniff_time,
                            'flags': getattr(tcp_layer, 'flags', 'N/A'),
                            'seq': getattr(tcp_layer, 'seq', 'N/A'),
                            'ack': getattr(tcp_layer, 'ack', 'N/A'),
                            'window_size': getattr(tcp_layer, 'window_size_value', 'N/A'),
                            'length': packet.length
                        }
                        
                        self.tcp_flows[flow_key].append(tcp_info)
                        
                        # 检测可疑的 TCP 活动
                        self._detect_suspicious_tcp(tcp_info, flow_key)
                        
                except AttributeError as e:
                    # 忽略没有 TCP 层的包
                    continue
                    
        except Exception as e:
            print(f"[-] 分析 TCP 流量时出错: {e}")
    
    def _detect_suspicious_http(self, http_info, flow_key):
        """检测可疑的 HTTP 活动"""
        # 检测可能的目录遍历攻击
        if '..' in http_info['uri'] or '/etc/passwd' in http_info['uri']:
            self.suspicious_activities.append({
                'type': 'HTTP - 可能的目录遍历攻击',
                'flow': flow_key,
                'details': http_info,
                'timestamp': http_info['timestamp']
            })
        
        # 检测 SQL 注入特征
        sql_injection_patterns = ['union select', 'select *', 'insert into', 'drop table', '1=1']
        if any(pattern in http_info['uri'].lower() for pattern in sql_injection_patterns):
            self.suspicious_activities.append({
                'type': 'HTTP - 可能的 SQL 注入尝试',
                'flow': flow_key,
                'details': http_info,
                'timestamp': http_info['timestamp']
            })
        
        # 检测可疑用户代理
        suspicious_user_agents = ['sqlmap', 'nmap', 'nessus', 'nikto', 'w3af']
        if any(agent in http_info['user_agent'].lower() for agent in suspicious_user_agents):
            self.suspicious_activities.append({
                'type': 'HTTP - 可疑用户代理',
                'flow': flow_key,
                'details': http_info,
                'timestamp': http_info['timestamp']
            })
    
    def _detect_suspicious_tcp(self, tcp_info, flow_key):
        """检测可疑的 TCP 活动"""
        # 检测可能的端口扫描 (多个 SYN 包而没有完整握手)
        if tcp_info['flags'] == '0x00000002':  # SYN 标志
            self.suspicious_activities.append({
                'type': 'TCP - 可能的端口扫描 (SYN)',
                'flow': flow_key,
                'details': tcp_info,
                'timestamp': tcp_info['timestamp']
            })
        
        # 检测可能的网络侦察 (FIN 扫描)
        if tcp_info['flags'] == '0x00000001':  # FIN 标志
            self.suspicious_activities.append({
                'type': 'TCP - 可能的 FIN 扫描',
                'flow': flow_key,
                'details': tcp_info,
                'timestamp': tcp_info['timestamp']
            })
    
    def generate_report(self, output_file=None):
        """生成分析报告"""
        report = {
            'http_flows': dict(self.http_flows),
            'tcp_flows': dict(self.tcp_flows),
            'suspicious_activities': self.suspicious_activities,
            'summary': {
                'total_http_flows': len(self.http_flows),
                'total_tcp_flows': len(self.tcp_flows),
                'total_suspicious_activities': len(self.suspicious_activities)
            }
        }
        
        if output_file:
            with open(output_file, 'w') as f:
                json.dump(report, f, indent=4, default=str)
            print(f"[+] 报告已保存到: {output_file}")
        else:
            print(json.dumps(report, indent=4, default=str))
        
        return report

def main():
    parser = argparse.ArgumentParser(description='网络流量分析工具')
    parser.add_argument('-f', '--file', required=True, help='PCAP 文件路径')
    parser.add_argument('-o', '--output', help='输出报告文件路径 (JSON 格式)')
    parser.add_argument('--http', action='store_true', help='只分析 HTTP 流量')
    parser.add_argument('--tcp', action='store_true', help='只分析 TCP 流量')
    
    args = parser.parse_args()
    
    if not args.http and not args.tcp:
        # 如果没有指定协议,默认分析所有
        args.http = True
        args.tcp = True
    
    analyzer = TrafficAnalyzer(args.file)
    
    if args.http:
        analyzer.analyze_http_traffic()
    
    if args.tcp:
        analyzer.analyze_tcp_traffic()
    
    report = analyzer.generate_report(args.output)
    
    # 打印简要摘要
    print("\n[+] 分析完成!")
    print(f"    - HTTP 流数量: {report['summary']['total_http_flows']}")
    print(f"    - TCP 流数量: {report['summary']['total_tcp_flows']}")
    print(f"    - 可疑活动数量: {report['summary']['total_suspicious_activities']}")
    
    if report['summary']['total_suspicious_activities'] > 0:
        print("\n[!] 检测到可疑活动:")
        for activity in report['suspicious_activities']:
            print(f"    - {activity['type']} ({activity['flow']})")

if __name__ == '__main__':
    main()

使用示例

  1. 安装依赖:
bash 复制代码
pip install pyshark
  1. 运行脚本:
bash 复制代码
# 分析所有流量
python traffic_analyzer.py -f capture.pcap

# 只分析 HTTP 流量
python traffic_analyzer.py -f capture.pcap --http

# 只分析 TCP 流量
python traffic_analyzer.py -f capture.pcap --tcp

# 保存报告到文件
python traffic_analyzer.py -f capture.pcap -o report.json
shell 复制代码
(.venv) (base) liuxiaowei@localhost 内网渗透 % python pyshark分析流量.py -f /Users/liuxiaowei/attacker_2025/cap1.pcap --http
[+] 分析 HTTP 流量...
{
    "http_flows": {
        "192.168.1.61:65094 -> 140.207.56.109:80": [
            {
                "timestamp": "2025-08-21 07:10:13.445231",
                "method": "POST",
                "uri": "/mmtls/004d48a0",
                "host": "extshort.weixin.qq.com",
                "user_agent": "MicroMessenger Client",
                "status_code": "N/A",
                "content_type": "application/octet-stream",
                "length": "1003"
            }
        ],
        "140.207.56.109:80 -> 192.168.1.61:65094": [
            {
                "timestamp": "2025-08-21 07:10:13.602393",
                "method": "N/A",
                "uri": "N/A",
                "host": "N/A",
                "user_agent": "N/A",
                "status_code": "200",
                "content_type": "application/octet-stream",
                "length": "1236"
            }
        ],
        "192.168.1.61:65095 -> 140.207.56.109:80": [
            {
                "timestamp": "2025-08-21 07:10:13.634277",
                "method": "POST",
                "uri": "/mmtls/004d48a0",
                "host": "extshort.weixin.qq.com",
                "user_agent": "MicroMessenger Client",
                "status_code": "N/A",
                "content_type": "application/octet-stream",
                "length": "745"
            }
        ],
        "140.207.56.109:80 -> 192.168.1.61:65095": [
            {
                "timestamp": "2025-08-21 07:10:13.749410",
                "method": "N/A",
                "uri": "N/A",
                "host": "N/A",
                "user_agent": "N/A",
                "status_code": "200",
                "content_type": "application/octet-stream",
                "length": "1437"
            }
        ],
        "192.168.1.61:65096 -> 140.207.56.109:80": [
            {
                "timestamp": "2025-08-21 07:10:16.744114",
                "method": "POST",
                "uri": "/mmtls/004e0d95",
                "host": "extshort.weixin.qq.com",
                "user_agent": "MicroMessenger Client",
                "status_code": "N/A",
                "content_type": "application/octet-stream",
                "length": "785"
            }
        ],
        "140.207.56.109:80 -> 192.168.1.61:65096": [
            {
                "timestamp": "2025-08-21 07:10:16.805098",
                "method": "N/A",
                "uri": "N/A",
                "host": "N/A",
                "user_agent": "N/A",
                "status_code": "200",
                "content_type": "application/octet-stream",
                "length": "401"
            }
        ]
    },
    "tcp_flows": {},
    "suspicious_activities": [],
    "summary": {
        "total_http_flows": 6,
        "total_tcp_flows": 0,
        "total_suspicious_activities": 0
    }
}

[+] 分析完成!
    - HTTP 流数量: 6
    - TCP 流数量: 0
    - 可疑活动数量: 0

功能说明

  1. HTTP 流量分析:

    • 提取请求方法、URI、主机、用户代理等信息
    • 检测目录遍历攻击
    • 识别 SQL 注入尝试
    • 发现可疑用户代理(如扫描工具)
  2. TCP 流量分析:

    • 分析 TCP 标志位、序列号、确认号等
    • 检测端口扫描活动(SYN 扫描)
    • 识别网络侦察活动(FIN 扫描)
  3. 安全检测:

    • 自动识别多种常见攻击模式
    • 生成详细的安全报告
    • 输出 JSON 格式的报告便于进一步处理

注意事项

  1. 确保已安装 Wireshark/tshark,因为 PyShark 依赖于这些工具
  2. 处理大型 pcap 文件可能需要较长时间和大量内存
  3. 脚本中的检测规则是基础示例,实际环境中可能需要根据具体需求调整和扩展

这个脚本为网络安全工程师提供了一个起点,可以根据实际需求进一步扩展功能,如添加更多协议的解析、实现更复杂的安全检测规则等。