单片机外设(七)RTC时间获取

文章目录

  • 一.RTC介绍
  • [二.IMX6ull RTC介绍](#二.IMX6ull RTC介绍)
  • [三. SNVS重点寄存器介绍](#三. SNVS重点寄存器介绍)
    • [1.SNVS_HP Command(HPCOMR)](#1.SNVS_HP Command(HPCOMR))
    • [2.SNVS_HP/SNVS_LP Control register (SNVS_HPCR/SNVS_LPCR)](#2.SNVS_HP/SNVS_LP Control register (SNVS_HPCR/SNVS_LPCR))
    • [3.SNVS_HP/SNVS_LP 状态寄存器(SNVS_HPSR/SNVS_LPSR)](#3.SNVS_HP/SNVS_LP 状态寄存器(SNVS_HPSR/SNVS_LPSR))
    • [4.SNVS_HP/SNVS_LP 实时计数器高字节寄存器(HPRTCMR/LPSRTCMR)](#4.SNVS_HP/SNVS_LP 实时计数器高字节寄存器(HPRTCMR/LPSRTCMR))
    • [5.SNVS_HP/SNVS_LP 实时计数器低字节寄存器(SNVS_HPRTCLR/SNVS_LPSRTCLR)](#5.SNVS_HP/SNVS_LP 实时计数器低字节寄存器(SNVS_HPRTCLR/SNVS_LPSRTCLR))
    • [6.SNVS_HP 时间报警高字节寄存器(SNVS_HPTAMR)](#6.SNVS_HP 时间报警高字节寄存器(SNVS_HPTAMR))
  • 四.获取RTC时间
  • [五.Alarm 中断](#五.Alarm 中断)
    • [1. 编程思路](#1. 编程思路)
      • [RTC 闹钟功能操作步骤](#RTC 闹钟功能操作步骤)
    • 2.代码

一.RTC介绍

实时时钟(Real Time Clock, RTC):可在系统断电时用备用电池工作,断电时备用电池能存储秒、分、小时、周、日、月、年时间数据,单元外接32.768 kHz晶振,有定时报警功能 。

二.IMX6ull RTC介绍

  • 硬件功能:imx6ull芯片的Secure Non - Volatile Storage (SNVS)提供RTC功能 ,其低功耗(电池支持)部分含安全实时计数器、单调计数器、通用寄存器,由电池供电,芯片断电时电池保持SNVS_LP寄存器状态 。
  • 专业术语:Secure Non - Volatile Storage (SNVS)(安全非易失性存储)、RTC(Real Time Clock,实时时钟 ) 、monotonic counter(单调计数器 ) 、SNVS_LP registers(SNVS低功耗寄存器 ) 。
  • SNVS_HP部分功能:实现启用系统通信和SNVS_LP部分分配配置的所有功能
  • SNVS_LP部分功能:提供能够安全存储和保护敏感数据的硬件,其内部有SRTC(定时器 ),核心板为其提供32.768KHz时钟信号即可工作 。

1.SNVS_HP (high power domain)

  1. 功能单元:SNVS_HP分为IP总线接口、SNVS_LP接口、带报警功能的实时计数器、控制和状态寄存器这些功能单元 。
  2. 供电与接口:SNVS_HP位于芯片电源域,与芯片其余部分一同供电;是SNVS_LP和系统其余部分间的接口,访问SNVS_LP寄存器须经SNVS_HP且其需上电,通过寄存器访问权限策略决定是否允许访问特定寄存器 。

2.SNVS_LP (low power domain)

功能单元 :SNVS_LP(低功耗域)的功能单元有非翻转单调计数器、通用寄存器、控制和状态寄存器 。
子系统与电源:SNVS_LP是数据存储子系统,用于存储和保护系统数据,不受主系统电源状态影响;处于始终上电域,为单独电源域,有自身电源 。

3.SNVS interrupts and alarms

  1. 时间报警寄存器功能
    • SNVS_HP非安全RTC有自身时间报警寄存器,应用程序可更新。
    • 能生成中断提醒主机处理器,可从低功耗模式唤醒主机处理器;系统断电时无法唤醒整个系统(因报警也断电 )。
  2. 周期性中断功能
    • SNVS_HP非安全RTC含周期性中断,RTC选定位0 - 1或1 - 0转换时产生。
    • 中断源依HP控制寄存器PI_FREQ字段,从HP RTC 16位中选,位选择定义中断频率 。

三. SNVS重点寄存器介绍

1.SNVS_HP Command(HPCOMR)

2.SNVS_HP/SNVS_LP Control register (SNVS_HPCR/SNVS_LPCR)

3.SNVS_HP/SNVS_LP 状态寄存器(SNVS_HPSR/SNVS_LPSR)

4.SNVS_HP/SNVS_LP 实时计数器高字节寄存器(HPRTCMR/LPSRTCMR)

5.SNVS_HP/SNVS_LP 实时计数器低字节寄存器(SNVS_HPRTCLR/SNVS_LPSRTCLR)

6.SNVS_HP 时间报警高字节寄存器(SNVS_HPTAMR)


四.获取RTC时间

1.编程思路

  • 操作步骤类:
    • 使能SNVS时钟
    • 设置寄存器访问不受权限限制
    • 停止RTC计数器,等待RTC计数器停止成功
    • 设置日期
    • 开启RTC计数器,等待RTC计数器开启成功
    • 每隔1秒读取RTC数据,然后输出

2.日期时间与秒时间之间转换

(1)daetime.h

cpp 复制代码
#ifndef _DATETIME_HEAD_H
#define _DATETIME_HEAD_H

#include <stdint.h>

#define SECONDS_IN_A_DAY (86400U)
#define SECONDS_IN_A_HOUR (3600U)
#define SECONDS_IN_A_MINUTE (60U)
#define DAYS_IN_A_YEAR (365U)
#define YEAR_RANGE_START (1970U)
#define YEAR_RANGE_END (2099U)

typedef struct rtc_datetime
{
    uint16_t year;   /*!< Range from 1970 to 2099. */
    uint8_t month;   /*!< Range from 1 to 12. */
    uint8_t day;     /*!< Range from 1 to 31 (depending on month). */
    uint8_t hour;    /*!< Range from 0 to 23. */
    uint8_t minute;  /*!< Range from 0 to 59. */
    uint8_t second;  /*!< Range from 0 to 59. */
} rtc_datetime_t;

extern uint32_t convert_datetime_to_seconds(const rtc_datetime_t *datetime);
extern void convert_seconds_to_datetime(uint32_t seconds, rtc_datetime_t *datetime);

#endif /* _DATETIME_HEAD_H */

(2)datetime.c

cpp 复制代码
#include "datetime.h"

uint32_t convert_datetime_to_seconds(const rtc_datetime_t *datetime)
{
    /* Number of days from begin of the non Leap-year*/
    uint16_t monthDays[] = {0U, 31U, 59U, 90U, 120U, 151U, 
                            181U, 212U, 243U, 273U, 304U, 334U};
    uint32_t seconds = 0;

    /* Compute number of days from 1970 till given year*/
    seconds = (datetime->year - 1970U) * DAYS_IN_A_YEAR;
    /* Add leap year number of days */
    seconds += ((datetime->year / 4) - (1970U / 4));
    /* Add number of days till given month*/
    seconds += monthDays[datetime->month];
    /* Add days in given month. We subtract the current day as it is 
     * represented in the hours, minutes and seconds field*/
    seconds += (datetime->day - 1);
    /* For leap year if month less than or equal to February, decrement day counter*/
    if ((!(datetime->year & 3U)) && (datetime->month <= 2U))
    {
        seconds--;
    }

    seconds = (seconds * SECONDS_IN_A_DAY) + (datetime->hour * SECONDS_IN_A_HOUR) + 
              (datetime->minute * SECONDS_IN_A_MINUTE) + datetime->second;

    return seconds;
}

void convert_seconds_to_datetime(uint32_t seconds, rtc_datetime_t *datetime)
{
    uint32_t x;
    uint32_t secondsRemaining, days;
    uint16_t daysInYear;
    /* Table of days in a month for a non leap year. First entry in the table is not used,
     * valid months start from 1
     */
    uint8_t daysPerMonth[] = {0U, 31U, 28U, 31U, 30U, 31U, 30U, 
                              31U, 31U, 30U, 31U, 30U, 31U};

    /* Start with the seconds value that is passed in to be converted to 
     * date time format*/
    secondsRemaining = seconds;

    /* Calculate the number of days, we add 1 for the current day which is represented in 
     * the hours and seconds field
     */
    days = secondsRemaining / SECONDS_IN_A_DAY + 1;

    /* Update seconds left*/
    secondsRemaining = secondsRemaining % SECONDS_IN_A_DAY;

    /* Calculate the datetime hour, minute and second fields */
    datetime->hour = secondsRemaining / SECONDS_IN_A_HOUR;
    secondsRemaining = secondsRemaining % SECONDS_IN_A_HOUR;
    datetime->minute = secondsRemaining / 60U;
    datetime->second = secondsRemaining % SECONDS_IN_A_MINUTE;

    /* Calculate year */
    daysInYear = DAYS_IN_A_YEAR;
    datetime->year = YEAR_RANGE_START;
    while (days > daysInYear)
    {
        /* Decrease day count by a year and increment year by 1 */
        days -= daysInYear;
        datetime->year++;

        /* Adjust the number of days for a leap year */
        if (datetime->year & 3U)
        {
            daysInYear = DAYS_IN_A_YEAR;
        }
        else
        {
            daysInYear = DAYS_IN_A_YEAR + 1;
        }
    }

    /* Adjust the days in February for a leap year */
    if (!(datetime->year & 3U))
    {
        daysPerMonth[2] = 29U;
    }

    for (x = 1U; x <= 12U; x++)
    {
        if (days <= daysPerMonth[x])
        {
            datetime->month = x;
            break;
        }
        else
        {
            days -= daysPerMonth[x];
        }
    }

    datetime->day = days;

    return;
}

3.代码

cpp 复制代码
#include "imx6ull.h"
#include "datetime.h"
void rtc_init(void)
{
  /*Enable Clock*/
  CCM_CCGR5 |= (0x3 << 18);

  /*
  NPSWA_EN [31] 1 Any software can accsee
  */
   SNVS->HPCOMR |= (1 << 31);
}

void rtc_stop(void)
{
  /*
   RTC_EN [0] 0b clear Enable
  */
  SNVS->HPCR &= ~(1 << 0);
  while(SNVS->HPCR & (1 << 0)){

  }
}

void rtc_start(void)
{
    /*
      RTC_EN [0] 1b Enable
    */
   SNVS->HPCR |= (1 << 0);
   while((SNVS->HPCR & (1 << 0)) == 0)
   {

   }
}

void rtc_set_datetime(rtc_datetime_t *datetime)
{
    uint32_t seconds;
    rtc_stop();
    seconds = convert_datetime_to_seconds(datetime);
    SNVS->HPRTCMR = seconds >> 17;
    //[31:18][17:0]
    SNVS->HPRTCLR = seconds << 15;
    rtc_start();
    return;

}

void rtc_get_datetime(rtc_datetime_t *datetime)
{
   uint32_t tmp = 0;
uint32_t seconds = 0;

do {
    tmp = seconds;
    seconds = (SNVS->HPRTCMR << 17) | (SNVS->HPRTCLR >> 15);
} while (seconds != tmp);

convert_seconds_to_datetime(seconds, datetime);

return;
}

void rtc_test(void)
{
    rtc_datetime_t datetime;

rtc_init();

datetime.year = 2025;
datetime.month = 1;
datetime.day = 1;
datetime.hour = 21;
datetime.minute = 40;
datetime.second = 30;

rtc_set_datetime(&datetime);

while(1) {
    rtc_get_datetime(&datetime);
    uart_printf("%d-%d-%d  %d:%d:%d\r\n", datetime.year, datetime.month, datetime.day, 
                datetime.hour, datetime.minute, datetime.second);
    gpt_delay_sec(1);
}

return;
}

五.Alarm 中断

1. 编程思路

RTC 闹钟功能操作步骤

  1. 注册 RTC 中断

    需编写代码完成 RTC 中断的注册,使系统能响应 RTC 相关中断事件(如闹钟触发 )。

  2. 设置 RTC alarm 日期

    • Disable RTC alarm:先禁用 RTC 闹钟,避免设置过程中误触发。
    • 设置日期:配置闹钟触发的具体日期、时间等参数(如年、月、日、时、分、秒 )。
    • Enable RTC alarm:启用 RTC 闹钟,使配置的闹钟参数生效,到指定时间触发中断。
  3. 中断处理函数逻辑

    • 判断是否是 RTC alarm 中断:在中断处理函数中,通过检测中断标志等方式,识别是否由 RTC 闹钟触发中断。
    • 输出提醒信息:若确认是 RTC alarm 中断,输出"闹钟时间到达"等提示信息(可通过串口、显示屏等方式输出 )。
    • 清除中断标志:执行写 1 清 0 操作,清除 RTC alarm 中断标志,确保后续中断能正常触发。

2.代码

cpp 复制代码
int rtc_interrupt_handler(int id)
{
    if(SNVS->HPSR & (1 << 0))
    {
       uart_printf("RTC Alarm\r\n");
       //clear interrupt
       SNVS->HPSR |= (1 << 0);
       while(SNVS->HPSR & (1 << 0)){

       }
    }
   
   return 0;
}

void rtc_set_alarm(rtc_datetime_t *datetime)
{
    int seconds;

// 请求 RTC 中断:注册中断请求,绑定中断处理函数
request_irq(SNVS_Consolidated_IRQn, rtc_interrupt_handler);

// 禁用闹钟:通过操作 HPCR 寄存器,等待禁用完成
SNVS->HPCR &= ~(1 << 1);
while (SNVS->HPCR & (1 << 1)) {
    // 等待寄存器位清除,确保闹钟已禁用
}

// 设置闹钟时间:将 datetime 转换为秒数,拆分后写入寄存器
seconds = convert_datetime_to_seconds(datetime);
// 高 15 位写入 HPRTCMR([31:17] 存储秒数高段)
SNVS->HPRTCMR = seconds >> 17;
// 低 17 位写入 HPRTCLR([16:0] 存储秒数低段,通过左移 15 位对齐)
SNVS->HPRTCLR = seconds << 15;

  //Enable alarm
  SNVS->HPCR |= (1 << 1);
  while((SNVS->HPCR & (1 << 1)) == 0){}
}