基于大模型的电信网络诈骗预警技术研究

学习论文:基于大模型的电信网络诈骗预警技术研究

研究背景与核心问题

  1. 问题现状
    • 电信网络诈骗案件数量持续上升(2017-2021年全国案件超28万件,诈骗罪占比36.53%),诈骗手段快速迭代导致++传统基于知识库的预警技术++效果有限。
    • 当前难点:诈骗话术冗长、线索分散(平均1182字,最长超6000字),人工特征提取效率低且无法适应新型诈骗变种。
  2. 技术契机
    • 大模型(如ChatGPT)在few-shot/zero-shot任务中表现优异,为少样本诈骗文本分类提供新思路。

关键技术方法

基于大模型的诈骗文本分类框架

  • 总体流程:

    复制代码
    语音输入 → 语音转写 → 主题分类(贷款相关?) → 特征判定(多要素分解) → 综合判定
  • 主题分类:过滤非贷款对话(如闲聊、业务办理),减少计算量。
  • 特征判定:将复杂诈骗判别分解为粒度更小的子任务(如判定"宣传话术""要求交费"等特征)。

核心创新点

  • 特征提取自动化
    • 采用句向量聚类技术:
      • 使用嵌入模型 bge-large-zh-v1.5 提取句向量,对152份诈骗样本的6874个短句聚类(K-means, k=30)。
      • 聚类结果分为三类:贷款相关 (如"还款""冻结解冻")、对话相关 (如"回复联系")、无主题(杂乱文本)。
      • 替代人工拆解特征,提升效率与一致性。
  • 提示词自动生成与优化(APE方法)
    • 步骤:
      1. 大模型基于模板生成初始提示词(填充正负样本)。
      2. 评分筛选(公式:Score = 0.6 * Recall + 0.4 * Precision,侧重召回率)。
      3. 多轮迭代:对高分提示词进行语义变体重采样。
    • 解决提示词人工编写耗时、质量不稳定的问题。

分类器构建

手工特征方案

  • 提炼贷款诈骗7大特征(如"无抵押宣传""要求交费""操作出错"等),设计ICIO框架提示词(指令-背景-输入-输出)。

  • 分类规则:加权投票(特征权重25-40),累计权重≥40判定为诈骗。

贷款诈骗7大特征
  1. 宣传话术
    • 使用"无抵押、免征信、低利率、快速放款"等虚假广告诱导受害者。
  2. 陌生关系
    • 对话双方为陌生人关系(如"客服与客户"),排除熟人称呼(如"某师傅""某总")。
  3. 要求下载App
    • 以办理贷款手续为由,要求受害者下载指定App或登录网站。
  4. 要求交费
    • 编造"认证还款、保证金、手续费、刷流水"等理由要求转账。
  5. 操作出错
    • 受害者操作时必然"出错"(如账户冻结、贷款失败),为后续诈骗铺垫。
  6. 解冻账户
    • 以"解冻账户"为由要求二次交费(如"再次转账方可继续贷款")。
  7. 要求截图
    • 受害者交费后被要求提供"电子回执单、短信截图"等作为"凭证"。
特征权重与判定规则
  • 权重分配(用于综合判定):

    特征 权重
    宣传话术 35
    操作出错 40
    解冻账户 35
    要求交费 25
    要求下载App 20
    要求截图 20
    陌生关系 10
  • 判定规则

    累计权重 ≥40 即判定为贷款诈骗。

实际数据分布

在152个贷款诈骗样本中,各特征出现比例:

  • 陌生关系:100%(所有诈骗样本均伪装陌生关系)
  • 要求交费:62.5%
  • 操作出错:48.6%
  • 要求截图:44.0%
  • 要求下载App:38.1%
  • 宣传话术:23.6%
  • 解冻账户:35.5%

说明:单一样本通常不会包含全部特征(诈骗分多阶段进行),但权重较高的特征(如"操作出错""解冻账户")更具判别性。

自动聚类特征方案

  • 聚类生成15个贷款诈骗的特征,划分为高权重特征(如"冻结解冻""截图")和低权重特征。
  • 分类规则:累计权重≥45判定为诈骗。

自动聚类特征方案的核心是通过无监督学习替代人工特征拆解,解决传统方法效率低、一致性差的问题:

  1. 任务目标
    自动识别诈骗文本中的高频语义片段,形成可量化判别的特征集合。
  2. 技术路线
    句向量提取 → 无监督聚类 → 特征权重分配 → 综合判定
实现步骤

1. 数据预处理

  • 原始数据:152个贷款诈骗样本的语音转写文本(平均长度1182字)。
  • 短句切分:
    • 按标点符号分割文本,过滤长度<5字符或>30字符的句子。
    • 得到6874个有效短句作为聚类输入。

2. 句向量提取

  • 嵌入模型 :采用bge-large-zh-v1.5(当前最优中文文本嵌入模型之一)。
  • 向量维度:1024维向量表示每个短句的语义特征。

3. K-means聚类

  • 聚类参数k=30(根据经验设定)。

  • 距离度量:余弦相似度(更适合文本向量)

  • 聚类结果:

聚类测试代码,感觉效果不是很好:

python 复制代码
import re
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import matplotlib
# 设置matplotlib后端以避免PyCharm兼容性问题
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import seaborn as sns


class FraudTextCluster:
    def __init__(self, k=30, min_len=5, max_len=30):
        """
        初始化聚类器
        :param k: 聚类数量(默认为30)
        :param min_len: 最短句子长度(字符数)
        :param max_len: 最长句子长度(字符数)
        """
        self.k = k
        self.min_len = min_len
        self.max_len = max_len
        # 加载中文嵌入模型(论文使用的bge-large-zh-v1.5)
        self.model = SentenceTransformer('D:\\llms\\bge-large-zh-v1.5')

    def preprocess(self, texts):
        """
        文本预处理:分割句子并过滤无效短句
        :param texts: 原始文本列表(每个元素为一个诈骗样本)
        :return: 有效短句列表
        """
        short_sentences = []
        for text in texts:
            # 按标点符号分割句子
            sentences = re.split(r'[。?!;,]', text)
            for sent in sentences:
                # 过滤长度不符合要求的句子
                if self.min_len <= len(sent) <= self.max_len:
                    short_sentences.append(sent.strip())
        return short_sentences

    def extract_embeddings(self, sentences):
        """
        提取句向量
        :param sentences: 短句列表
        :return: 句向量矩阵 (n_samples, 1024)
        """
        return self.model.encode(sentences, normalize_embeddings=True)

    def cluster(self, embeddings):
        """
        K-means聚类
        :param embeddings: 句向量矩阵
        :return: 聚类标签和中心点
        """
        # 获取样本数量(嵌入矩阵的第一维)
        n_samples = len(embeddings)
        if not isinstance(n_samples, int):
            raise ValueError("embeddings 的长度应该是一个整数")

        # 动态调整聚类数量
        k = min(int(self.k), n_samples)  # 确保聚类数不超过样本数

        # 动态调整PCA维度
        if n_samples > 50:
            pca = PCA(n_components=50)
            reduced_emb = pca.fit_transform(embeddings)
            used_emb = reduced_emb
        else:
            # 样本数不足50时,不进行降维
            used_emb = embeddings

        # K-means聚类
        kmeans = KMeans(
            n_clusters=k,
            init='k-means++',
            n_init=10,
            max_iter=300,
            tol=1e-4,
            random_state=42
        )
        labels = kmeans.fit_predict(used_emb)
        return labels, kmeans.cluster_centers_

    def analyze_clusters(self, sentences, labels):
        """
        分析聚类结果
        :param sentences: 短句列表
        :param labels: 聚类标签
        :return: 聚类分析字典
        """
        cluster_dict = {}
        for i in range(max(labels) + 1):
            cluster_dict[i] = []

        for sent, label in zip(sentences, labels):
            cluster_dict[label].append(sent)

        return cluster_dict

    def visualize_clusters(self, embeddings, labels):
        """
        可视化聚类结果(降维到2D)
        :param embeddings: 句向量
        :param labels: 聚类标签
        """
        # 降维到2D
        pca = PCA(n_components=2)
        vis_emb = pca.fit_transform(embeddings)

        plt.figure(figsize=(12, 8))
        sns.scatterplot(
            x=vis_emb[:, 0],
            y=vis_emb[:, 1],
            hue=labels,
            palette="viridis",
            alpha=0.7,
            s=50
        )
        plt.title("Sentence Clustering Visualization")
        plt.xlabel("PCA Component 1")
        plt.ylabel("PCA Component 2")
        plt.legend(title='Cluster', bbox_to_anchor=(1.05, 1), loc='upper left')
        plt.tight_layout()
        # 保存图像到文件而不是直接显示,以避免PyCharm兼容性问题
        plt.savefig('clustering_result.png', dpi=300, bbox_inches='tight')
        print("聚类结果已保存到 clustering_result.png")
        plt.close()  # 关闭图形以释放内存

    def full_pipeline(self, texts):
        """
        完整聚类流程
        :param texts: 原始文本列表
        :return: 聚类结果字典
        """
        # 1. 预处理
        sentences = self.preprocess(texts)
        print(f"预处理完成,得到{len(sentences)}个有效短句")

        if len(sentences) == 0:
            print("警告:未获得有效短句,请检查输入数据")
            return {}

        # 2. 提取句向量
        embeddings = self.extract_embeddings(sentences)
        print(f"句向量提取完成,维度:{embeddings.shape}")

        # 3. 聚类
        labels, centers = self.cluster(embeddings)
        print(f"聚类完成,共生成{len(set(labels))}个簇")

        # 4. 分析结果
        cluster_data = self.analyze_clusters(sentences, labels)

        # 5. 可视化(可选)
        if len(sentences) > 1:  # 至少需要2个样本才能可视化
            self.visualize_clusters(embeddings, labels)

        return cluster_data


# ====================== 使用示例 ====================== #
if __name__ == "__main__":
    # 模拟论文中的诈骗文本数据(实际应替换为真实数据)
    sample_texts = [
        "您的账户因操作失误被冻结,需转账5000元解冻才能继续贷款",
        "银行卡异常冻结,请扫码支付解冻费,否则无法提现",
        "贷款审核需要验证还款能力,请先缴纳2000元保证金",
        "系统检测到风险,需要您提供身份证照片和银行卡截图",
        "下载我们的APP即可申请无抵押贷款,秒批秒到账",
        "请稍等,正在为您处理贷款申请,可能需要几分钟时间",
        "您好,我是XX银行客服,请问有什么可以帮您?",
        "麻烦提供下您的姓名和手机号,我们需要登记信息",
        "贷款已审批通过,但需要先支付手续费才能放款",
        "您的账户存在异常操作,请立即联系客服处理"
    ]

    # 初始化聚类器(参数与论文一致)
    clusterer = FraudTextCluster(k=30, min_len=5, max_len=30)

    # 运行完整流程
    results = clusterer.full_pipeline(sample_texts)

    # 打印聚类结果(每个簇的前3个句子)
    print("\n聚类结果示例:")
    for cluster_id, sentences in results.items():
        print(f"\nCluster {cluster_id} (样本数: {len(sentences)}):")
        for i, sent in enumerate(sentences[:3]):
            print(f"  - {sent}")
            
输出:
预处理完成,得到21个有效短句
句向量提取完成,维度:(21, 1024)
聚类完成,共生成21个簇
聚类结果已保存到 clustering_result.png

聚类结果示例:

Cluster 0 (样本数: 1):
  - 系统检测到风险

Cluster 1 (样本数: 1):
  - 您的账户存在异常操作

Cluster 2 (样本数: 1):
  - 贷款已审批通过

Cluster 3 (样本数: 1):
  - 请扫码支付解冻费

Cluster 4 (样本数: 1):
  - 需要您提供身份证照片和银行卡截图

Cluster 5 (样本数: 1):
  - 请先缴纳2000元保证金

Cluster 6 (样本数: 1):
  - 可能需要几分钟时间

Cluster 7 (样本数: 1):
  - 请立即联系客服处理

Cluster 8 (样本数: 1):
  - 请问有什么可以帮您

Cluster 9 (样本数: 1):
  - 否则无法提现

Cluster 10 (样本数: 1):
  - 秒批秒到账

Cluster 11 (样本数: 1):
  - 麻烦提供下您的姓名和手机号

Cluster 12 (样本数: 1):
  - 贷款审核需要验证还款能力

Cluster 13 (样本数: 1):
  - 下载我们的APP即可申请无抵押贷款

Cluster 14 (样本数: 1):
  - 我们需要登记信息

Cluster 15 (样本数: 1):
  - 我是XX银行客服

Cluster 16 (样本数: 1):
  - 需转账5000元解冻才能继续贷款

Cluster 17 (样本数: 1):
  - 正在为您处理贷款申请

Cluster 18 (样本数: 1):
  - 但需要先支付手续费才能放款

Cluster 19 (样本数: 1):
  - 银行卡异常冻结

Cluster 20 (样本数: 1):
  - 您的账户因操作失误被冻结

4. 特征权重分配

  • 高权重特征 (5类,权重=20):
    资金周转(3)、出错(9)、截图(10)、冻结解冻(24)、提现(27) (直接对应诈骗关键环节)
  • 低权重特征 (10类,权重=10):
    其他贷款相关类别(如还款、审核、身份证等)
  • 判定规则 :累计权重 ≥45 即判定为诈骗。
提示词自动生成(APE方法)

针对每个聚类特征,自动生成优化提示词:

  1. 生成模板:

    复制代码
    "请找出'特征句子'和非特征句子的区别,生成一个prompt用于检测特征句子。示例:  
    特征句:[正样本1]、[正样本2]...  
    非特征句:[负样本1]、[负样本2]..."
  2. 优化流程:

    • 初始生成 :用聚类结果中的正/负样本填充模板,生成候选提示词。
      • 举例 :如"账户被冻结需转账解冻"
        • 正样本 (诈骗话术):
          "您的账户因操作失误被冻结,需转账5000元解冻"
          "银行卡异常冻结,请扫码支付解冻费"
        • 负样本 (正常对话):
          "系统卡顿请稍后重试"
          "网络延迟导致交易失败"
    • 评分筛选
      • 测试效果,例如:
        • 召回率(Recall)= 75%(正确识别15/20个真实"冻结解冻"句)
        • 精确率(Precision)= 75%(20个判定结果中15个正确)
      • 计算得分:Score = 0.6×85% + 0.4×75% = 81%
      • 结果:该提示词进入Top 5候选(需与其他生成提示词比较得分)。。
    • 迭代优化:对高分提示词语义变体重采样(如调整措辞、扩充描述)。
  3. 最终提示词示例:

    复制代码
    "请在文本中查找涉及账户冻结、解冻要求的句子,典型话术如'需转账解冻''账户被冻结'。  
    输出格式:JSON数组,包含原文句子、判断理由、是否特征句。"

实验与结果

  1. 数据预处理

    • 数据来源:944条真实语音对话 → 过滤为667条文本(含152条贷款诈骗数据)。
    • 预处理:
      • 语音转写纠错(GLM-4-9B模型增强可读性)。
      • 隐私脱敏(Qwen2.5-14B-Instruct检测敏感信息,人工核验)。
    • 标注:5名标注员3轮标注(独立-交叉-合并),主题分类首轮平均F1=0.810。
  2. 关键实验结果

    • 主题分类:召回率84.9%,精确率72.2%,F1=0.782(接近人工标注水平)。
    • 手工特征分类:召回率79.6%,精确率87.6%,F1=0.834。
    • 自动聚类特征分类:召回率81.6%,精确率84.9%,F1=0.832(与手工方案性能相当且优于人工首轮标注)。
  3. 对比优势

    方案 召回率 精确率 F1值
    人工首轮标注 79.6% 82.4% 0.810
    手工特征 79.6% 87.6% 0.834
    自动聚类特征 81.6% 84.9% 0.832

应用价值与展望

  1. 实际意义
    • 少量样本高效预警:仅需数十个样本构建分类器(APE),快速响应新型诈骗变种(传统方法需更新知识库)。
    • 全流程优化:自动化特征提取和提示词生成将人工介入环节减少50%以上,显著提升处理效率。
  2. 未来方向
    • 扩展至其他诈骗类型(如冒充客服、投资诈骗)。
    • 优化聚类算法特征权重分配策略。