1 前言
1.1 开发该框架的动机
OpenGL ES 是一个渲染指令接口集合,每渲染一帧图像都是一系列渲染指令的排列组合。常用的渲染指令约有 70 个,记住这些渲染指令及其排列组合方式,是一件痛苦的事情。另外,在图形开发中,经常因为功耗、丢帧等问题需要性能优化,如何从框架层面进行性能优化是一件有挑战的问题。
基于上述原因,笔者手撕了一个 nimi 版的渲染框架,将这些常用的渲染指令有条理地封装、组织、归类,方便愉快并高效地进行 OpenGL ES 渲染开发。笔者在 OpenGL ES 领域从业也有些时日,对现有碎片化的知识进行归纳凝练,形成系统的认知,是件势在必行的事。
1.2 为什么选择 native
之所以选择在 native 中开发该渲染框架,是为了使该框架具有更好的跨平台特性和渲染效率。目前大多数平台的 OpenGL ES API 基于 C++ 实现,因此只需更改少量代码就可以将该框架迁移到其他平台上;另外,C++ 代码相较于 Java 等代码具有更高的执行效率。Windows 上的实现详见 → 在Windows上手撕一个mini版的渲染框架。
1.3 一个 mini 版的渲染框架应该具备哪些能力
一个 mini 版的渲染框架需要对 OpenGL ES 的常用指令进行归类(如下图),封装 EGL、error check、Shader Program、Mesh、VAO、VBO、IBO、Texture、FBO 等类,方便开发者快速开发渲染程序,将更多的注意力聚焦在业务上,而不是如何去组织 OpenGL ES 指令上。
1.4 为什么强调 mini 版渲染框架
从渲染指令的角度来看,OpenGL ES 3.0 约有 300 个渲染指令,本文框架只封装其中最常用的 70 个,指令覆盖程度仍有较大提升空间。
从功能的角度来看,笔者深知一个成熟完备的渲染框架应该具备相机、光源、光照模型(Lambert、Phong、PBR 等)、阴影、射线拾取、重力、碰撞检测、粒子系统等功能。
鉴于上述原因,笔者审慎地保留了 "mini" 前缀。
1.5 本框架的优势
本框架具有以下优势。
- 封装友好:对常用的 EGL 和 GL 指令(约 70 个)进行封装,提供了 EGL 环境搭建、着色器程序生成、网格构建、纹理贴图、离屏渲染、异常检测等基础能力,方便开发者快速开发渲染程序,将精力从繁杂的渲染指令中解放出来,将更多的注意力聚焦到业务上。
- 代码规整:框架中多处设计了 bind 和 unbind 接口,用于绑定和解绑 OpenGL ES 状态机相关 "插槽",如:VBO、IBO、VAO 中都设计了 bind 和 unbind 接口,ShaderProgram、Texture、FBO、TextureAction 中都设计了 bind 接口;另外,在 FBO 中设计了 begin 和 end 接口,很直观地告诉用户夹在这中间的内容将渲染到 FBO。接口规整简洁,方便用户记忆。
- 易于扩展:定义了 TextureAction 接口,并提供 bind 函数,GLTexture、FBO 都继承了 TextureAction,用户自定义的渲染器或特效类也可以继承 TextureAction,将它们统一视为纹理活动(可绑定),这在特效叠加(或后处理)中非常有用,方便管理多渲染目标图层,易于扩展。
- 性能高效:封装了 VBO、IBO、VAO,用于缓存顶点数据、索引、格式等信息到显存,减少 CPU 到 GPU 的数据传输,提高渲染效率;缓存了 attribute 和 uniform 变量的 location,避免 CPU 频繁向 GPU 查询 location,进一步提高渲染效率;基于 C++ 语言实现渲染框架,代码执行效率较高。
- 跨平台:基于 C++ 语言实现,具有更好的跨平台特性;封装了 core_lib,使得平台相关头文件可以轻松替换;封装了 Application,使得平台相关 api 可以轻松替换。
- 方便调试:设计了 EGL_CALL 和 GL_CALL 两个宏,对每个 EGL 和 GL 指令进行异常检测,方便调试渲染指令,并且通过预编译宏 DEBUG 开关动态控制是否生成异常检测的代码,Release 版本会自动屏蔽异常检测代码,避免带来额外功耗。
2 渲染框架
经过深思熟虑,笔者给该渲染框架命名为 glcore,命名空间也是 glcore。本文完整资源(包含 glcore 框架和第 4 节的应用)详见 → 【OpenGL ES】一个mini版的Android native渲染框架。Windows 版本的 glcore 实现详见 → 在Windows上手撕一个mini版的渲染框架。
2.1 框架结构
2.2 CMakeLists
CMakeLists.txt
cpp
# 设置库名
set(LIB_NAME "glcore")
# 递归添加源文件列表
file(GLOB_RECURSE GL_CORE_SOURCES src *.cpp)
# 添加预构建库
add_library(${LIB_NAME} ${GL_CORE_SOURCES})
# 将当前目录设为公共头文件目录 (任何链接glcore库的目标都能自动获得这个头文件路径)
target_include_directories(${LIB_NAME} PUBLIC .)
# 添加链接的三方库文件
target_link_libraries(${LIB_NAME} PRIVATE
android
log
EGL
GLESv3)
2.3 核心头文件
核心头文件分为对内和对外的,即内部依赖 core_lib,外部开放 core。
core_lib.h
cpp
#pragma once
/**
* glcore 依赖的核心 GL 库, 便于将 glcore 移植到其他平台
* Android: EGL + GLESv3
* Windows: glfw / freeglut + glad / glew
*
* @author little fat sheep
*/
#include <EGL/egl.h>
#include <GLES3/gl3.h>
之所以要单独拎出 core_lib.h,是为了方便将该框架迁移到其他平台,如 Windows 上依赖的三方渲染库是 glfw / freeglut + glad / glew,如果不抽出 core_lib.h,就需要将很多地方的 egl.h + gl3.h 改为 glfw3.h / freeglut.h + glad.h / glew.h,工作量大,也容易漏改。
core.h
cpp
#pragma once
/**
* glcore核心头文件
* 该头文件是留给外部使用的, glcore内部不能使用, 避免自己包含自己
* @author little fat sheep
*/
// OpenGL ES API
#include "core_lib.h"
// glcore 核心头文件
#include "application.h"
#include "elg_surface_view.h"
#include "format.h"
#include "frame_buffer_object.h"
#include "gl_inspector.h"
#include "gl_texture.h"
#include "mesh.h"
#include "mesh_utils.h"
#include "shader_program.h"
#include "texture_action.h"
#include "vertex_attribute.h"
core.h 只提供给外部使用,方便外部只需要包含一个头文件,就能获取 glcore 的基础能力。
2.4 Application
Application 主要用于管理全局环境,使用单例模式,方便获取一些全局的变量。它也是 glcore 中唯一一个依赖平台相关的接口(除日志 log 接口外),如:jniEnv、context、m_window 都是 Android 特有的,如果将 glcore 迁移到 Windows 中,这些变量全都要替换或删除,将这些平台相关变量都集中在 Application 中,迁移平台时修改起来也比较容易,避免太分散容易漏掉。
application.h
cpp
#pragma once
#include <android/native_window.h>
#include <jni.h>
#define app Application::getInstance()
namespace glcore
{
/**
* 应用程序, 存储全局的参数, 便于访问
* @author little fat sheep
*/
class Application {
private:
static Application* sInstance;
public:
JNIEnv* jniEnv = nullptr;
jobject context = nullptr;
int width = 0;
int height = 0;
float aspect = 1.0f;
private:
ANativeWindow* m_window = nullptr;
public:
static Application* getInstance();
~Application();
void resize(int width, int height);
ANativeWindow* getWindow() { return m_window; }
void setWindow(ANativeWindow* window);
void releaseWindow();
private:
Application() {};
};
} // namespace glcore
application.cpp
cpp
#include "glcore/application.h"
namespace glcore
{
Application* Application::sInstance = nullptr;
Application *Application::getInstance()
{
if (sInstance == nullptr)
{
sInstance = new Application();
}
return sInstance;
}
Application::~Application()
{
jniEnv->DeleteGlobalRef(context);
releaseWindow();
}
void Application::resize(int width, int height)
{
this->width = width;
this->height = height;
this->aspect = (float) width / (float) height;
}
void Application::setWindow(ANativeWindow* window)
{
m_window = window;
resize(ANativeWindow_getWidth(window), ANativeWindow_getHeight(window));
}
void Application::releaseWindow()
{
if (m_window)
{
ANativeWindow_release(m_window);
m_window = nullptr;
}
}
} // namespace glcore
2.5 GLInspector
GLInspector 主要用于异常信息检测,另外设计了 EGL_CALL 和 GL_CALL 两个宏,分别对 EGL 和 GL 指令进行装饰。如果定义了 DEBUG 宏,就会对每个 EGL 和 GL 指令进行异常检测,方便调试代码;如果未定义了 DEBUG 宏,就不会进行异常检测。
用户可以在 CMakeLists.txt 中添加预编译宏 DEBUG,这样就可以根据 Release 和 Debug 版本自动构建不同的版本。
cpp
if (CMAKE_BUILD_TYPE STREQUAL "Debug")
# 添加预编译宏
add_definitions(-DDEBUG)
endif ()
gl_inspector.h
cpp
#pragma once
#include "core_lib.h"
#ifdef DEBUG
#define EGL_CALL(func) func;GLInspector::checkEGLError();
#define GL_CALL(func) func;GLInspector::checkGLError();
#else
#define EGL_CALL(func) func;
#define GL_CALL(func) func;
#endif
namespace glcore
{
/**
* OpenGL ES命令报错监视器
* @author little fat sheep
*/
class GLInspector
{
public:
static void checkEGLError(const char* tag); // 检查EGL报错信息
static void checkEGLError(); // 通用检查EGL错误
static void printShaderInfoLog(GLuint shader, const char* tag); // 打印Shader错误日志
static void printProgramInfoLog(GLuint program, const char* tag); // 打印Program错误日志
static void checkGLError(const char* tag); // 检查GL报错信息
static void checkGLError(); // 通用检查GL报错信息
};
} // namespace glcore
gl_inspector.cpp
cpp
#include <android/log.h>
#include <assert.h>
#include <string>
#include "glcore/gl_inspector.h"
#define LOG_TAG "Native: GLInspector"
#define LOGE(...) __android_log_print(ANDROID_LOG_ERROR, LOG_TAG, __VA_ARGS__)
using namespace std;
namespace glcore
{
void GLInspector::checkEGLError(const char *tag)
{
int error = eglGetError();
if (error != EGL_SUCCESS) {
LOGE("%s failed: 0x%x", tag, error);
}
}
void GLInspector::checkEGLError()
{
GLenum errorCode = eglGetError();
if (errorCode != EGL_SUCCESS) {
string error;
switch (errorCode)
{
case EGL_BAD_DISPLAY:
error = "EGL_BAD_DISPLAY";
break;
case EGL_NOT_INITIALIZED:
error = "EGL_NOT_INITIALIZED";
break;
case EGL_BAD_CONFIG:
error = "EGL_BAD_CONFIG";
break;
case EGL_BAD_CONTEXT:
error = "EGL_BAD_CONTEXT";
break;
case EGL_BAD_NATIVE_WINDOW:
error = "EGL_BAD_NATIVE_WINDOW";
break;
case EGL_BAD_SURFACE:
error = "EGL_BAD_SURFACE";
break;
case EGL_BAD_CURRENT_SURFACE:
error = "EGL_BAD_CURRENT_SURFACE";
break;
case EGL_BAD_ACCESS:
error = "EGL_BAD_ACCESS";
break;
case EGL_BAD_ALLOC:
error = "EGL_BAD_ALLOC";
break;
case EGL_BAD_ATTRIBUTE:
error = "EGL_BAD_ATTRIBUTE";
break;
case EGL_BAD_PARAMETER:
error = "EGL_BAD_PARAMETER";
break;
case EGL_BAD_NATIVE_PIXMAP:
error = "EGL_BAD_NATIVE_PIXMAP";
break;
case EGL_BAD_MATCH:
error = "EGL_BAD_MATCH";
break;
case EGL_CONTEXT_LOST:
error = "EGL_CONTEXT_LOST";
break;
default:
error = "UNKNOW";
break;
}
LOGE("checkEGLError failed: %s, 0x%x", error.c_str(), errorCode);
assert(false);
}
}
void GLInspector::printShaderInfoLog(GLuint shader, const char* tag)
{
char infoLog[512];
glGetShaderInfoLog(shader, 512, nullptr, infoLog);
LOGE("%s failed: %s", tag, infoLog);
}
void GLInspector::printProgramInfoLog(GLuint program, const char* tag)
{
char infoLog[512];
glGetProgramInfoLog(program, 512, nullptr, infoLog);
LOGE("%s failed: %s", tag, infoLog);
}
void GLInspector::checkGLError(const char *tag) {
GLenum error = glGetError();
if(error != GL_NO_ERROR) {
LOGE("%s failed: 0x%x", tag, error);
}
}
void GLInspector::checkGLError()
{
GLenum errorCode = glGetError();
if (errorCode != GL_NO_ERROR) {
string error;
switch (errorCode)
{
case GL_INVALID_ENUM:
error = "GL_INVALID_ENUM";
break;
case GL_INVALID_VALUE:
error = "GL_INVALID_VALUE";
break;
case GL_INVALID_OPERATION:
error = "GL_INVALID_OPERATION";
break;
case GL_INVALID_INDEX:
error = "GL_INVALID_INDEX";
break;
case GL_INVALID_FRAMEBUFFER_OPERATION:
error = "GL_INVALID_FRAMEBUFFER_OPERATION";
break;
case GL_OUT_OF_MEMORY:
error = "GL_OUT_OF_MEMORY";
break;
default:
error = "UNKNOW";
break;
}
LOGE("checkGLError failed: %s, 0x%x", error.c_str(), errorCode);
assert(false);
}
}
} // namespace glcore
2.6 EGLSurfaceView
EGLSurfaceView 主要承载了 EGL 环境搭建。EGL 详细介绍见 → 【OpenGL ES】EGL+FBO离屏渲染。
elg_surface_view.h
cpp
#include <android/log.h>
#include "glcore/application.h"
#include "glcore/elg_surface_view.h"
#include "glcore/gl_inspector.h"
#define LOG_TAG "Native: EGLSurfaceView"
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)
namespace glcore
{
EGLSurfaceView::EGLSurfaceView()
{
LOGI("init");
createDisplay();
createConfig();
createContext();
}
EGLSurfaceView::~EGLSurfaceView()
{
LOGI("destroy");
if (m_renderer)
{
delete m_renderer;
m_renderer = nullptr;
}
if (m_eglDisplay && m_eglDisplay != EGL_NO_DISPLAY)
{
// 与显示设备解绑
EGL_CALL(eglMakeCurrent(m_eglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT));
// 销毁 EGLSurface
if (m_eglSurface && m_eglSurface != EGL_NO_SURFACE)
{
EGL_CALL(eglDestroySurface(m_eglDisplay, m_eglSurface));
delete &m_eglSurface;
}
// 销毁 EGLContext
if (m_eglContext && m_eglContext != EGL_NO_CONTEXT)
{
EGL_CALL(eglDestroyContext(m_eglDisplay, m_eglContext));
delete &m_eglContext;
}
// 销毁 EGLDisplay (显示设备)
EGL_CALL(eglTerminate(m_eglDisplay));
delete &m_eglDisplay;
}
delete app;
}
void EGLSurfaceView::setRenderer(Renderer *renderer)
{
LOGI("setRenderer");
m_renderer = renderer;
}
bool EGLSurfaceView::surfaceCreated()
{
LOGI("createSurface");
createSurface();
makeCurrent();
if (m_renderer && m_firstCreateSurface)
{
m_renderer->onSurfaceCreated();
m_firstCreateSurface = false;
}
return true;
}
void EGLSurfaceView::surfaceChanged(int width, int height)
{
LOGI("surfaceChanged, width: %d, height: %d", width, height);
app->resize(width, height);
if (m_renderer)
{
m_renderer->onSurfaceChanged(width, height);
}
}
void EGLSurfaceView::drawFrame()
{
if (!m_eglSurface || m_eglSurface == EGL_NO_SURFACE || !m_renderer)
{
return;
}
m_renderer->onDrawFrame();
EGL_CALL(eglSwapBuffers(m_eglDisplay, m_eglSurface));
}
void EGLSurfaceView::surfaceDestroy()
{
LOGI("surfaceDestroy");
if (m_eglDisplay && m_eglDisplay != EGL_NO_DISPLAY)
{
// 与显示设备解绑
EGL_CALL(eglMakeCurrent(m_eglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT));
// 销毁 EGLSurface
if (m_eglSurface && m_eglSurface != EGL_NO_SURFACE)
{
EGL_CALL(eglDestroySurface(m_eglDisplay, m_eglSurface));
m_eglSurface = nullptr;
}
}
app->releaseWindow();
}
// 1.创建EGLDisplay
void EGLSurfaceView::createDisplay()
{
EGL_CALL(m_eglDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY));
EGL_CALL(eglInitialize(m_eglDisplay, nullptr, nullptr));
}
// 2.创建EGLConfig
void EGLSurfaceView::createConfig()
{
if (m_eglDisplay && m_eglDisplay != EGL_NO_DISPLAY)
{
const EGLint configAttrs[] = {
EGL_RED_SIZE, 8,
EGL_GREEN_SIZE, 8,
EGL_BLUE_SIZE, 8,
EGL_ALPHA_SIZE, 8,
EGL_DEPTH_SIZE, 8,
EGL_RENDERABLE_TYPE, EGL_OPENGL_ES3_BIT,
EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
EGL_NONE
};
EGLint numConfigs;
EGL_CALL(eglChooseConfig(m_eglDisplay, configAttrs, &m_eglConfig, 1, &numConfigs));
}
}
// 3.创建EGLContext
void EGLSurfaceView::createContext()
{
if (m_eglConfig)
{
const EGLint contextAttrs[] = {
EGL_CONTEXT_CLIENT_VERSION, 3,
EGL_NONE
};
EGL_CALL(m_eglContext = eglCreateContext(m_eglDisplay, m_eglConfig, EGL_NO_CONTEXT, contextAttrs));
}
}
// 4.创建EGLSurface
void EGLSurfaceView::createSurface()
{
if (m_eglContext && m_eglContext != EGL_NO_CONTEXT)
{
EGL_CALL(m_eglSurface = eglCreateWindowSurface(m_eglDisplay, m_eglConfig, app->getWindow(), nullptr));
}
}
// 5.绑定EGLSurface和EGLContext到显示设备(EGLDisplay)
void EGLSurfaceView::makeCurrent()
{
if (m_eglSurface && m_eglSurface != EGL_NO_SURFACE)
{
EGL_CALL(eglMakeCurrent(m_eglDisplay, m_eglSurface, m_eglSurface, m_eglContext));
}
}
} // namespace glcore
elg_surface_view.cpp
cpp
#include <android/log.h>
#include "glcore/application.h"
#include "glcore/elg_surface_view.h"
#include "glcore/gl_inspector.h"
#define LOG_TAG "Native: EGLSurfaceView"
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)
namespace glcore
{
EGLSurfaceView::EGLSurfaceView()
{
LOGI("init");
createDisplay();
createConfig();
createContext();
}
EGLSurfaceView::~EGLSurfaceView()
{
LOGI("destroy");
if (m_renderer)
{
delete m_renderer;
m_renderer = nullptr;
}
if (m_eglDisplay && m_eglDisplay != EGL_NO_DISPLAY)
{
// 与显示设备解绑
EGL_CALL(eglMakeCurrent(m_eglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT));
// 销毁 EGLSurface
if (m_eglSurface && m_eglSurface != EGL_NO_SURFACE)
{
EGL_CALL(eglDestroySurface(m_eglDisplay, m_eglSurface));
//GLInspector::checkEGLConfig("eglDestroySurface");
delete &m_eglSurface;
}
// 销毁 EGLContext
if (m_eglContext && m_eglContext != EGL_NO_CONTEXT)
{
EGL_CALL(eglDestroyContext(m_eglDisplay, m_eglContext));
//GLInspector::checkEGLConfig("eglDestroyContext");
delete &m_eglContext;
}
// 销毁 EGLDisplay (显示设备)
EGL_CALL(eglTerminate(m_eglDisplay));
//GLInspector::checkEGLConfig("eglTerminate");
delete &m_eglDisplay;
}
delete app;
}
void EGLSurfaceView::setRenderer(Renderer *renderer)
{
LOGI("setRenderer");
m_renderer = renderer;
}
bool EGLSurfaceView::surfaceCreated()
{
LOGI("createSurface");
createSurface();
makeCurrent();
if (m_renderer && m_firstCreateSurface)
{
m_renderer->onSurfaceCreated();
m_firstCreateSurface = false;
}
return true;
}
void EGLSurfaceView::surfaceChanged(int width, int height)
{
LOGI("surfaceChanged, width: %d, height: %d", width, height);
app->resize(width, height);
if (m_renderer)
{
m_renderer->onSurfaceChanged(width, height);
}
}
void EGLSurfaceView::drawFrame()
{
if (!m_eglSurface || m_eglSurface == EGL_NO_SURFACE || !m_renderer)
{
return;
}
m_renderer->onDrawFrame();
EGL_CALL(eglSwapBuffers(m_eglDisplay, m_eglSurface));
//GLInspector::checkEGLConfig("eglSwapBuffers");
}
void EGLSurfaceView::surfaceDestroy()
{
LOGI("surfaceDestroy");
if (m_eglDisplay && m_eglDisplay != EGL_NO_DISPLAY)
{
// 与显示设备解绑
EGL_CALL(eglMakeCurrent(m_eglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT));
// 销毁 EGLSurface
if (m_eglSurface && m_eglSurface != EGL_NO_SURFACE)
{
EGL_CALL(eglDestroySurface(m_eglDisplay, m_eglSurface));
//GLInspector::checkEGLConfig("eglDestroySurface");
m_eglSurface = nullptr;
}
}
app->releaseWindow();
}
// 1.创建EGLDisplay
void EGLSurfaceView::createDisplay()
{
EGL_CALL(m_eglDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY));
EGL_CALL(eglInitialize(m_eglDisplay, nullptr, nullptr));
//GLInspector::checkEGLConfig("eglInitialize");
}
// 2.创建EGLConfig
void EGLSurfaceView::createConfig()
{
if (m_eglDisplay && m_eglDisplay != EGL_NO_DISPLAY)
{
const EGLint configAttrs[] = {
EGL_RED_SIZE, 8,
EGL_GREEN_SIZE, 8,
EGL_BLUE_SIZE, 8,
EGL_ALPHA_SIZE, 8,
EGL_DEPTH_SIZE, 8,
EGL_RENDERABLE_TYPE, EGL_OPENGL_ES3_BIT,
EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
EGL_NONE
};
EGLint numConfigs;
EGL_CALL(eglChooseConfig(m_eglDisplay, configAttrs, &m_eglConfig, 1, &numConfigs));
//GLInspector::checkEGLConfig("eglChooseConfig");
}
}
// 3.创建EGLContext
void EGLSurfaceView::createContext()
{
if (m_eglConfig)
{
const EGLint contextAttrs[] = {
EGL_CONTEXT_CLIENT_VERSION, 3,
EGL_NONE
};
EGL_CALL(m_eglContext = eglCreateContext(m_eglDisplay, m_eglConfig, EGL_NO_CONTEXT, contextAttrs));
//GLInspector::checkEGLConfig("eglCreateContext");
}
}
// 4.创建EGLSurface
void EGLSurfaceView::createSurface()
{
if (m_eglContext && m_eglContext != EGL_NO_CONTEXT)
{
EGL_CALL(m_eglSurface = eglCreateWindowSurface(m_eglDisplay, m_eglConfig, app->getWindow(), nullptr));
//GLInspector::checkEGLConfig("eglCreateWindowSurface");
}
}
// 5.绑定EGLSurface和EGLContext到显示设备(EGLDisplay)
void EGLSurfaceView::makeCurrent()
{
if (m_eglSurface && m_eglSurface != EGL_NO_SURFACE)
{
EGL_CALL(eglMakeCurrent(m_eglDisplay, m_eglSurface, m_eglSurface, m_eglContext));
//GLInspector::checkEGLConfig("eglMakeCurrent");
}
}
} // namespace glcore
2.7 ShaderProgram
ShaderProgram 主要用于编译 Shader、链接 Program、设置 attribute 属性、更新 uniform 属性。
glGetAttribLocation、glGetUniformLocation 两个接口需要 CPU 向 GPU 查询 location 信息,并且会频繁调用,为提高性能,笔者设计了 m_attributes 和 m_uniforms 两个 map 存储 name 到 location 的映射,方便快速获取 location,避免 CPU 频繁与 GPU 交互,以提高渲染性能。
shader_program.h
cpp
#pragma once
#include <map>
#include "core_lib.h"
using namespace std;
namespace glcore
{
/**
* 着色器程序
* @author little fat sheep
*/
class ShaderProgram
{
public:
static constexpr char* ATTRIBUTE_POSITION = "a_position"; // 着色器中位置属性名
static constexpr char* ATTRIBUTE_NORMAL = "a_normal"; // 着色器中位法线性名
static constexpr char* ATTRIBUTE_COLOR = "a_color"; // 着色器中颜色属性名
static constexpr char* ATTRIBUTE_TEXCOORD = "a_texCoord"; // 着色器中纹理坐标属性名
static constexpr char* ATTRIBUTE_TANGENT = "a_tangent"; // 着色器中切线属性名
static constexpr char* ATTRIBUTE_BINORMAL = "a_binormal"; // 着色器中副切线属性名
static constexpr char* UNIFORM_TEXTURE = "u_texture"; // 着色器中纹理名
static constexpr char* UNIFORM_VP = "u_projectionViewMatrix"; // 着色器中VP名
private:
GLuint m_program;
map<const char*, int> m_attributes;
map<const char*, int> m_uniforms;
public:
ShaderProgram(const char* vertexCode, const char* fragmentCode);
~ShaderProgram();
void bind();
GLuint getHandle() { return m_program; }
// 操作attribute属性
void enableVertexAttribArray(const char* name);
void enableVertexAttribArray(int location);
void setVertexAttribPointer(const char* name, int size, int type, bool normalize, int stride, int offset);
void setVertexAttribPointer(int location, int size, int type, bool normalize, int stride, int offset);
void disableVertexAttribArray(const char* name);
void disableVertexAttribArray(int location);
// 操作uniform属性
void setUniformi(const char* name, int value);
void setUniformi(int location, int value);
void setUniformi(const char* name, int value1, int value2);
void setUniformi(int location, int value1, int value2);
void setUniformi(const char* name, int value1, int value2, int value3);
void setUniformi(int location, int value1, int value2, int value3);
void setUniformi(const char* name, int value1, int value2, int value3, int value4);
void setUniformi(int location, int value1, int value2, int value3, int value4);
void setUniformf(const char* name, float value);
void setUniformf(int location, float value);
void setUniformf(const char* name, float value1, float value2);
void setUniformf(int location, float value1, float value2);
void setUniformf(const char* name, float value1, float value2, int value3);
void setUniformf(int location, float value1, float value2, int value3);
void setUniformf(const char* name, float value1, float value2, int value3, int value4);
void setUniformf(int location, float value1, float value2, int value3, int value4);
void setUniform1fv(const char* name, int length, const float values[]);
void setUniform1fv(int location, int count, float const values[]);
void setUniform2fv(const char* name, int count, const float values[]);
void setUniform2fv(int location, int count, const float values[]);
void setUniform3fv(const char* name, int count, const float values[]);
void setUniform3fv(int location, int count, const float values[]);
void setUniform4fv(const char* name, int count, const float values[]);
void setUniform4fv(int location, int count, const float values[]);
void setUniformMatrix2fv(const char* name, int count, bool transpose, const float *value);
void setUniformMatrix2fv(int location, int count, bool transpose, const float *value);
void setUniformMatrix3fv(const char* name, int count, bool transpose, const float *value);
void setUniformMatrix3fv(int location, int count, bool transpose, const float *value);
void setUniformMatrix4fv(const char* name, int count, bool transpose, const float *value);
void setUniformMatrix4fv(int location, int count, bool transpose, const float *value);
int fetchAttributeLocation(const char* name);
int fetchUniformLocation(const char* name);
private:
void compileShaders(const char* vertexCode, const char* fragmentCode);
GLuint loadShader(GLenum type, const char* source);
GLuint linkProgram(GLuint vertexShader, GLuint fragmentShader);
};
} // namespace glcore
shader_program.cpp
cpp
#include <android/log.h>
#include "glcore/gl_inspector.h"
#include "glcore/shader_program.h"
#define LOG_TAG "Native: ShaderProgram"
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)
namespace glcore
{
ShaderProgram::ShaderProgram(const char* vertexCode, const char* fragmentCode)
{
compileShaders(vertexCode, fragmentCode);
}
ShaderProgram::~ShaderProgram()
{
if (m_program)
{
GL_CALL(glUseProgram(0));
GL_CALL(glDeleteProgram(m_program));
m_program = 0;
}
m_attributes.clear();
m_uniforms.clear();
}
void ShaderProgram::bind()
{
GL_CALL(glUseProgram(m_program));
}
void ShaderProgram::enableVertexAttribArray(const char* name)
{
int location = fetchAttributeLocation(name);
enableVertexAttribArray(location);
}
void ShaderProgram::enableVertexAttribArray(int location)
{
GL_CALL(glEnableVertexAttribArray(location));
}
void ShaderProgram::setVertexAttribPointer(const char *name, int size, int type, bool normalize, int stride, int offset)
{
int location = fetchAttributeLocation(name);
setVertexAttribPointer(location, size, type, normalize, stride, offset);
}
void ShaderProgram::setVertexAttribPointer(int location, int size, int type, bool normalize, int stride, int offset)
{
GL_CALL(glVertexAttribPointer(location, size, type, normalize, stride, (void*) offset));
}
void ShaderProgram::disableVertexAttribArray(const char* name)
{
int location = fetchAttributeLocation(name);
disableVertexAttribArray(location);
}
void ShaderProgram::disableVertexAttribArray(int location)
{
GL_CALL(glDisableVertexAttribArray(location));
}
void ShaderProgram::setUniformi(const char* name, int value)
{
int location = fetchUniformLocation(name);
GL_CALL(glUniform1i(location, value));
}
void ShaderProgram::setUniformi(int location, int value)
{
GL_CALL(glUniform1i(location, value));
}
void ShaderProgram::setUniformi(const char* name, int value1, int value2)
{
int location = fetchUniformLocation(name);
GL_CALL(glUniform2i(location, value1, value2));
}
void ShaderProgram::setUniformi(int location, int value1, int value2)
{
GL_CALL(glUniform2i(location, value1, value2));
}
void ShaderProgram::setUniformi(const char* name, int value1, int value2, int value3)
{
int location = fetchUniformLocation(name);
GL_CALL(glUniform3i(location, value1, value2, value3));
}
void ShaderProgram::setUniformi(int location, int value1, int value2, int value3)
{
GL_CALL(glUniform3i(location, value1, value2, value3));
}
void ShaderProgram::setUniformi(const char* name, int value1, int value2, int value3, int value4)
{
int location = fetchUniformLocation(name);
GL_CALL(glUniform4i(location, value1, value2, value3, value4));
}
void ShaderProgram::setUniformi(int location, int value1, int value2, int value3, int value4)
{
GL_CALL(glUniform4i(location, value1, value2, value3, value4));
}
void ShaderProgram::setUniformf(const char* name, float value)
{
int location = fetchUniformLocation(name);
GL_CALL(glUniform1f(location, value));
}
void ShaderProgram::setUniformf(int location, float value)
{
GL_CALL(glUniform1f(location, value));
}
void ShaderProgram::setUniformf(const char* name, float value1, float value2)
{
int location = fetchUniformLocation(name);
GL_CALL(glUniform2f(location, value1, value2));
}
void ShaderProgram::setUniformf(int location, float value1, float value2)
{
GL_CALL(glUniform2f(location, value1, value2));
}
void ShaderProgram::setUniformf(const char* name, float value1, float value2, int value3)
{
int location = fetchUniformLocation(name);
GL_CALL(glUniform3f(location, value1, value2, value3));
}
void ShaderProgram::setUniformf(int location, float value1, float value2, int value3)
{
GL_CALL(glUniform3f(location, value1, value2, value3));
}
void ShaderProgram::setUniformf(const char* name, float value1, float value2, int value3, int value4)
{
int location = fetchUniformLocation(name);
GL_CALL(glUniform4f(location, value1, value2, value3, value4));
}
void ShaderProgram::setUniformf(int location, float value1, float value2, int value3, int value4)
{
GL_CALL(glUniform4f(location, value1, value2, value3, value4));
}
void ShaderProgram::setUniform1fv(const char* name, int count, const float values[])
{
int location = fetchUniformLocation(name);
GL_CALL(glUniform1fv(location, count, values));
}
void ShaderProgram::setUniform1fv(int location, int count, const float values[])
{
GL_CALL(glUniform1fv(location, count, values));
}
void ShaderProgram::setUniform2fv(const char* name, int count, const float values[])
{
int location = fetchUniformLocation(name);
GL_CALL(glUniform2fv(location, count / 2, values));
}
void ShaderProgram::setUniform2fv(int location, int count, const float values[])
{
GL_CALL(glUniform2fv(location, count / 2, values));
}
void ShaderProgram::setUniform3fv(const char* name, int count, const float values[])
{
int location = fetchUniformLocation(name);
GL_CALL(glUniform3fv(location, count / 3, values));
}
void ShaderProgram::setUniform3fv(int location, int count, const float values[])
{
GL_CALL(glUniform3fv(location, count / 3, values));
}
void ShaderProgram::setUniform4fv(const char* name, int count, const float values[])
{
int location = fetchUniformLocation(name);
GL_CALL(glUniform4fv(location, count / 4, values));
}
void ShaderProgram::setUniform4fv(int location, int count, const float values[])
{
GL_CALL(glUniform4fv(location, count / 4, values));
}
void ShaderProgram::setUniformMatrix2fv(const char* name, int count, bool transpose, const float *value)
{
int location = fetchUniformLocation(name);
GL_CALL(glUniformMatrix2fv(location, count, transpose, value));
}
void ShaderProgram::setUniformMatrix2fv(int location, int count, bool transpose, const float *value)
{
GL_CALL(glUniformMatrix2fv(location, count, transpose, value));
}
void ShaderProgram::setUniformMatrix3fv(const char* name, int count, bool transpose, const float *value)
{
int location = fetchUniformLocation(name);
GL_CALL(glUniformMatrix3fv(location, count, transpose, value));
}
void ShaderProgram::setUniformMatrix3fv(int location, int count, bool transpose, const float *value)
{
GL_CALL(glUniformMatrix3fv(location, count, transpose, value));
}
void ShaderProgram::setUniformMatrix4fv(const char* name, int count, bool transpose, const float *value)
{
int location = fetchUniformLocation(name);
GL_CALL(glUniformMatrix4fv(location, count, transpose, value));
}
void ShaderProgram::setUniformMatrix4fv(int location, int count, bool transpose, const float *value)
{
GL_CALL(glUniformMatrix4fv(location, count, transpose, value));
}
int ShaderProgram::fetchAttributeLocation(const char* name)
{
int location;
auto it = m_attributes.find(name);
if (it == m_attributes.end())
{
GL_CALL(location = glGetAttribLocation(m_program, name));
if (location == -1) {
LOGI("no attribute: %s", name);
//GLInspector::printProgramInfoLog(m_program, "fetchAttributeLocation");
return -1;
}
m_attributes[name] = location;
}
else
{
location = it->second;
}
return location;
}
int ShaderProgram::fetchUniformLocation(const char* name)
{
int location;
auto it = m_uniforms.find(name);
if (it == m_uniforms.end())
{
GL_CALL(location = glGetUniformLocation(m_program, name));
if (location == -1) {
LOGI("no uniform: %s", name);
//GLInspector::printProgramInfoLog(m_program, "fetchUniformLocation");
return -1;
}
m_uniforms[name] = location;
}
else
{
location = it->second;
}
return location;
}
void ShaderProgram::compileShaders(const char* vertexCode, const char* fragmentCode)
{
GLuint vertexShader = loadShader(GL_VERTEX_SHADER, vertexCode);
GLuint fragmentShader = loadShader(GL_FRAGMENT_SHADER, fragmentCode);
m_program = linkProgram(vertexShader, fragmentShader);
}
GLuint ShaderProgram::loadShader(GLenum type, const char* source)
{
GL_CALL(GLuint shader = glCreateShader(type));
GL_CALL(glShaderSource(shader, 1, &source, nullptr));
GL_CALL(glCompileShader(shader));
GLint success;
glGetShaderiv(shader, GL_COMPILE_STATUS, &success);
if (!success) {
GLInspector::printShaderInfoLog(shader, "loadShader");
return 0;
}
return shader;
}
GLuint ShaderProgram::linkProgram(GLuint vertexShader, GLuint fragmentShader)
{
GL_CALL(GLuint program = glCreateProgram());
GL_CALL(glAttachShader(program, vertexShader));
GL_CALL(glAttachShader(program, fragmentShader));
GL_CALL(glLinkProgram(program));
GLint success;
glGetProgramiv(program, GL_LINK_STATUS, &success);
if (!success) {
GLInspector::printProgramInfoLog(m_program, "linkProgram");
}
GL_CALL(glDeleteShader(vertexShader));
GL_CALL(glDeleteShader(fragmentShader));
return program;
}
} // namespace glcore
2.8 VBO
VBO 是 Vertex Buffer Object 的简称,即顶点缓冲对象,作用是缓存顶点数据到显存中,避免频繁调用 glVertexAttribPointer 传输顶点数据,减少 CPU 到 GPU 的数据传输,提高渲染效率。
顶点属性主要有位置、颜色、纹理坐标、法线、切线、副切线等,每个属性又有属性标识、维数、是否已标准化、数据类型、偏移、别名、纹理单元等。
由于 VBO 中有多个属性数据,每个属性有多个字段,笔者除了封装 VertexBufferObject 类,还封装了 VertexAttributes 和 VertexAttribute 两个类。VertexAttribute 是属性描述类,VertexAttributes 是属性描述集合。
vertex_buffer_object.h
cpp
#pragma once
#include <initializer_list>
#include <vector>
#include "core_lib.h"
#include "shader_program.h"
#include "vertex_attributes.h"
#include "vertex_attribute.h"
#include "vertex_attributes.h"
using namespace std;
namespace glcore
{
/**
* 顶点属性缓冲对象 (简称VBO)
* @author little fat sheep
*/
class VertexBufferObject
{
protected:
bool m_isBound = false; // 是否已绑定到VBO (或VAO)
bool m_isDirty = false; // 是否有脏数据 (缓存的数据需要更新)
private:
GLuint m_vboHandle; // VBO句柄
VertexAttributes* m_attributes; // 顶点属性
GLuint m_usage; // GL_STATIC_DRAW 或 GL_DYNAMIC_DRAW
const float* m_vertices; // 顶点属性数据
int m_vertexNum = 0; // 顶点个数
int m_bytes = 0; // 顶点属性字节数
public:
VertexBufferObject(bool isStatic, initializer_list<VertexAttribute*> attributes);
VertexBufferObject(bool isStatic, VertexAttributes* attributes);
virtual ~VertexBufferObject();
void setVertices(float* vertices, int bytes);
void bind(ShaderProgram* shader);
virtual void bind(ShaderProgram* shader, int* locations);
void unbind(ShaderProgram* shader);
virtual void unbind(ShaderProgram* shader, int* locations);
int getNumVertices() { return m_vertexNum; }
private:
void applyBufferData(); // 缓存数据
};
} // namespace glcore
vertex_buffer_object.cpp
cpp
#include <android/log.h>
#include "glcore/gl_inspector.h"
#include "glcore/vertex_buffer_object.h"
#define LOG_TAG "Native: VertexBufferObject"
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)
namespace glcore
{
VertexBufferObject::VertexBufferObject(bool isStatic, initializer_list<VertexAttribute*> attributes):
VertexBufferObject(isStatic, new VertexAttributes(attributes))
{
}
VertexBufferObject::VertexBufferObject(bool isStatic, VertexAttributes* attributes):
m_attributes(attributes)
{
m_usage = isStatic ? GL_STATIC_DRAW : GL_DYNAMIC_DRAW;
GL_CALL(glGenBuffers(1, &m_vboHandle));
LOGI("init: %d", m_vboHandle);
}
VertexBufferObject::~VertexBufferObject()
{
LOGI("destroy");
GL_CALL(glBindBuffer(GL_ARRAY_BUFFER, 0));
GL_CALL(glDeleteBuffers(1, &m_vboHandle));
m_vboHandle = 0;
delete m_attributes;
delete[] m_vertices;
}
void VertexBufferObject::setVertices(float* vertices, int bytes)
{
m_vertices = vertices;
m_vertexNum = bytes / m_attributes->vertexSize;
m_bytes = bytes;
m_isDirty = true;
if (m_isBound)
{
applyBufferData();
}
}
void VertexBufferObject::bind(ShaderProgram* shader)
{
bind(shader, nullptr);
}
void VertexBufferObject::bind(ShaderProgram* shader, int* locations)
{
GL_CALL(glBindBuffer(GL_ARRAY_BUFFER, m_vboHandle));
if (m_isDirty)
{
applyBufferData();
}
if (locations == nullptr)
{
for (int i = 0; i < m_attributes->size(); i++)
{
VertexAttribute* attribute = m_attributes->get(i);
shader->enableVertexAttribArray(attribute->alias);
shader->setVertexAttribPointer(attribute->alias, attribute->numComponents,
attribute->type, attribute->normalized, m_attributes->vertexSize,
attribute->offset);
}
}
else
{
for (int i = 0; i < m_attributes->size(); i++)
{
VertexAttribute* attribute = m_attributes->get(i);
shader->enableVertexAttribArray(locations[i]);
shader->setVertexAttribPointer(locations[i], attribute->numComponents,
attribute->type, attribute->normalized, m_attributes->vertexSize,
attribute->offset);
}
}
m_isBound = true;
}
void VertexBufferObject::unbind(ShaderProgram* shader)
{
unbind(shader, nullptr);
}
void VertexBufferObject::unbind(ShaderProgram* shader, int* locations)
{
if (locations == nullptr)
{
for (int i = 0; i < m_attributes->size(); i++)
{
shader->disableVertexAttribArray(m_attributes->get(i)->alias);
}
}
else
{
for (int i = 0; i < m_attributes->size(); i++)
{
shader->disableVertexAttribArray(locations[i]);
}
}
m_isBound = false;
}
void VertexBufferObject::applyBufferData()
{
GL_CALL(glBufferData(GL_ARRAY_BUFFER, m_bytes, m_vertices, m_usage));
//GLInspector::checkGLError("vbo: applyBufferData");
m_isDirty = false;
}
} // namespace glcore
vertex_attributes.h
cpp
#pragma once
#include <initializer_list>
#include <vector>
#include "vertex_attribute.h"
using namespace std;
namespace glcore
{
/**
* 顶点属性集(位置、颜色、纹理坐标、法线、切线、副切线等中的一部分)
* 每个顶点属性可以看作一个通道, 这个通道可能是多维的, 每个维度可能是多字节的
* @author little fat sheep
*/
class VertexAttributes
{
public:
int vertexSize; // 所有顶点属性的字节数
private:
vector<VertexAttribute*> m_attributes; // 顶点属性列表
public:
VertexAttributes(initializer_list<VertexAttribute*> attributes);
~VertexAttributes();
VertexAttribute* get(int index); // 根据索引获取属性
int size(); // 获取属性个数
private:
int calculateOffsets(); // 计算偏移
};
/**
* 顶点属性标识
* @author little fat sheep
*/
class Usage {
public:
static const int Position = 1;
static const int ColorUnpacked = 2;
static const int ColorPacked = 4;
static const int Normal = 8;
static const int TextureCoordinates = 16;
static const int Tangent = 32;
static const int BiNormal = 64;
};
} // namespace glcore
vertex_attributes.cpp
cpp
#include "glcore/vertex_attributes.h"
namespace glcore
{
VertexAttributes::VertexAttributes(initializer_list<VertexAttribute*> attributes):
m_attributes(attributes)
{
vertexSize = calculateOffsets();
}
VertexAttributes::~VertexAttributes()
{
m_attributes.clear();
}
VertexAttribute* VertexAttributes::get(int index)
{
if (index >= 0 && index < m_attributes.size())
{
return m_attributes[index];
}
return nullptr;
}
int VertexAttributes::size()
{
return m_attributes.size();
}
int VertexAttributes::calculateOffsets() {
int count = 0;
for (VertexAttribute* attribute : m_attributes) {
attribute->offset = count;
count += attribute->getSizeInBytes();
}
return count;
}
} // namespace glcore
vertex_attribute.h
cpp
#pragma once
namespace glcore
{
/**
* 单个顶点属性(位置、颜色、纹理坐标、法线、切线、副切线等中的一个)
* 每个顶点属性可以看作一个通道, 这个通道可能是多维的, 每个维度可能是多字节的
* @author little fat sheep
*/
class VertexAttribute
{
public:
int usage; // 顶点属性标识
int numComponents; // 顶点属性维数 (如顶点坐标属性是3维的, 纹理坐标是2维的)
bool normalized; // 顶点属性是否已经标准化 (有符号: -1~1, 无符号: 0~1)
int type; // 顶点属性的变量类型 (GL_FLOAT、GL_UNSIGNED_BYTE等)
int offset; // 顶点属性在字节上的偏移
const char* alias; // 顶点属性别名 (着色器中变量名)
int unit; // 纹理单元 (可能有多个纹理, 可选)
public:
VertexAttribute(int usage, int numComponents, const char* alias);
VertexAttribute(int usage, int numComponents, const char* alias, int unit);
VertexAttribute(int usage, int numComponents, int type, bool normalized, const char* alias);
VertexAttribute(int usage, int numComponents, int type, bool normalized, const char* alias, int unit);
~VertexAttribute();
static VertexAttribute* Position(); // 位置参数信息
static VertexAttribute* TexCoords(int unit); // 纹理坐标参数信息
static VertexAttribute* Normal(); // 法线参数信息
static VertexAttribute* ColorPacked(); // 颜色参数信息
static VertexAttribute* ColorUnpacked(); // 颜色参数信息
static VertexAttribute* Tangent(); // 切线参数信息
static VertexAttribute* Binormal(); // 副切线参数信息
int getSizeInBytes(); // 属性对应的字节数
private:
void create(int usage, int numComponents, int type, bool normalized, const char* alias, int unit);
};
} // namespace glcore
vertex_attribute.cpp
cpp
#include <android/log.h>
#include <string>
#include "glcore/shader_program.h"
#include "glcore/vertex_attribute.h"
#include "glcore/vertex_attributes.h"
#define LOG_TAG "Native: VertexAttribute"
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)
using namespace std;
namespace glcore
{
VertexAttribute::VertexAttribute(int usage, int numComponents, const char* alias):
VertexAttribute(usage, numComponents, alias, 0)
{
}
VertexAttribute::VertexAttribute(int usage, int numComponents, const char* alias, int unit)
{
int type = usage == Usage::ColorPacked ? GL_UNSIGNED_BYTE : GL_FLOAT;
bool normalized = usage == Usage::ColorPacked;
create(usage, numComponents, type, normalized, alias, unit);
}
VertexAttribute::VertexAttribute(int usage, int numComponents, int type, bool normalized, const char* alias)
{
create(usage, numComponents, type, normalized, alias, 0);
}
VertexAttribute::VertexAttribute(int usage, int numComponents, int type, bool normalized, const char* alias, int unit)
{
create(usage, numComponents, type, normalized, alias, unit);
}
VertexAttribute::~VertexAttribute()
{
free((void*)alias);
}
VertexAttribute* VertexAttribute::Position() {
return new VertexAttribute(Usage::Position, 3, ShaderProgram::ATTRIBUTE_POSITION);
}
VertexAttribute* VertexAttribute::TexCoords(int unit) {
string str = string(ShaderProgram::ATTRIBUTE_TEXCOORD) + to_string(unit);
// 复制字符串, 避免str被回收导致悬垂指针问题, 通过free((void*)alias)释放内存
const char* combined = strdup(str.c_str());
return new VertexAttribute(Usage::TextureCoordinates, 2, combined, unit);
}
VertexAttribute* VertexAttribute::Normal() {
return new VertexAttribute(Usage::Normal, 3, ShaderProgram::ATTRIBUTE_NORMAL);
}
VertexAttribute* VertexAttribute::ColorPacked() {
return new VertexAttribute(Usage::ColorPacked, 4, GL_UNSIGNED_BYTE, true, ShaderProgram::ATTRIBUTE_COLOR);
}
VertexAttribute* VertexAttribute::ColorUnpacked() {
return new VertexAttribute(Usage::ColorUnpacked, 4, GL_FLOAT, false, ShaderProgram::ATTRIBUTE_COLOR);
}
VertexAttribute* VertexAttribute::Tangent() {
return new VertexAttribute(Usage::Tangent, 3, ShaderProgram::ATTRIBUTE_TANGENT);
}
VertexAttribute* VertexAttribute::Binormal() {
return new VertexAttribute(Usage::BiNormal, 3, ShaderProgram::ATTRIBUTE_BINORMAL);
}
int VertexAttribute::getSizeInBytes()
{
switch (type) {
case GL_FLOAT:
case GL_FIXED:
return 4 * numComponents;
case GL_UNSIGNED_BYTE:
case GL_BYTE:
return numComponents;
case GL_UNSIGNED_SHORT:
case GL_SHORT:
return 2 * numComponents;
}
return 0;
}
void VertexAttribute::create(int usage, int numComponents, int type, bool normalized, const char* alias, int unit)
{
this->usage = usage;
this->numComponents = numComponents;
this->type = type;
this->normalized = normalized;
this->alias = alias;
this->unit = unit;
LOGI("create, alias: %s", alias);
}
} // namespace glcore
2.9 VAO
VAO 是 Vertex Array Object 的简称,即顶点数组对象,作用是缓存顶点属性的指针和描述(或格式)信息,简化顶点属性设置的流程,避免频繁调用 glVertexAttribPointer 设置属性描述(或格式)信息,减少 CPU 与 GPU 的交互,提高渲染效率。
vertex_buffer_object_with_vao.h
cpp
#pragma once
#include <initializer_list>
#include "core_lib.h"
#include "vertex_buffer_object.h"
namespace glcore
{
/**
* 携带VAO的顶点属性缓冲对象
* @author little fat sheep
*/
class VertexBufferObjectWithVAO : public VertexBufferObject
{
private:
GLuint m_vaoHandle; // VAO句柄
public:
VertexBufferObjectWithVAO(bool isStatic, initializer_list<VertexAttribute*> attributes);
VertexBufferObjectWithVAO(bool isStatic, VertexAttributes* attributes);
~VertexBufferObjectWithVAO() override;
void bind(ShaderProgram* shader, int* locations) override;
void unbind(ShaderProgram* shader, int* locations) override;
};
} // namespace glcore
vertex_buffer_object_with_vao.cpp
cpp
#include <android/log.h>
#include "glcore/gl_inspector.h"
#include "glcore/vertex_buffer_object_with_vao.h"
#define LOG_TAG "Native: VertexBufferObjectWithVAO"
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)
namespace glcore
{
VertexBufferObjectWithVAO::VertexBufferObjectWithVAO(bool isStatic,
initializer_list<VertexAttribute*> attributes):
VertexBufferObjectWithVAO(isStatic, new VertexAttributes(attributes))
{
}
VertexBufferObjectWithVAO::VertexBufferObjectWithVAO(bool isStatic, VertexAttributes* attributes):
VertexBufferObject(isStatic, attributes)
{
GL_CALL(glGenVertexArrays(1, &m_vaoHandle));
LOGI("init: %d", m_vaoHandle);
}
VertexBufferObjectWithVAO::~VertexBufferObjectWithVAO()
{
LOGI("destroy");
GL_CALL(glDeleteVertexArrays(1, &m_vaoHandle));
}
void VertexBufferObjectWithVAO::bind(ShaderProgram* shader, int* locations)
{
GL_CALL(glBindVertexArray(m_vaoHandle));
if (m_isDirty)
{
VertexBufferObject::bind(shader, locations);
}
m_isBound = true;
}
void VertexBufferObjectWithVAO::unbind(ShaderProgram* shader, int* locations)
{
GL_CALL(glBindVertexArray(0));
m_isBound = false;
}
} // namespace glcore
2.10 IBO
IBO 是 Index Buffer Object 的简称,即索引缓冲对象,作用是缓存顶点索引到显存中,避免频繁调用 glDrawElements 传输顶点索引,减少 CPU 到 GPU 的数据传输,提高渲染效率。由于 IBO 绑定的是 OpenGL ES 状态机的 GL_ELEMENT_ARRAY_BUFFER "插槽",并且对应的绘制指令又是 glDrawElements (都有 Element),因此 IBO 也被称为 EBO。
index_buffer_object.h
cpp
#pragma once
#include "core_lib.h"
namespace glcore
{
/**
* 顶点索引缓冲对象 (简称IBO)
* @author little fat sheep
*/
class IndexBufferObject
{
private:
GLuint m_iboHandle; // IBO句柄
GLuint m_usage; // GL_STATIC_DRAW 或 GL_DYNAMIC_DRAW
GLenum m_type = GL_UNSIGNED_SHORT; // 索引数据类型 (GL_UNSIGNED_SHORT 或 GL_UNSIGNED_INT)
const void* m_indices; // 顶点索引数据(short*或int*类型)
int m_indexNum = 0; // 索引个数
int m_bytes = 0; // 顶点索引字节数
bool m_isDirty = false; // 是否有脏数据 (缓存的数据需要更新)
bool m_isBound = false; // 是否已绑定到IBO
public:
IndexBufferObject(bool isStatic);
IndexBufferObject(bool isStatic, GLenum type);
~IndexBufferObject();
void setIndices (void* indices, int bytes);
void setIndices (void* indices, int bytes, GLenum type);
void bind();
void unbind();
int getNumIndices() { return m_indexNum; }
GLenum getType() { return m_type; }
private:
void applyBufferData(); // 缓存数据
int getTypeSize(); // 获取type对应的字节数
};
} // namespace glcore
index_buffer_object.cpp
cpp
#include <android/log.h>
#include "glcore/gl_inspector.h"
#include "glcore/index_buffer_object.h"
#define LOG_TAG "Native: IndexBufferObject"
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)
namespace glcore
{
IndexBufferObject::IndexBufferObject(bool isStatic):
IndexBufferObject(isStatic, GL_UNSIGNED_SHORT)
{
}
IndexBufferObject::IndexBufferObject(bool isStatic, GLenum type)
{
m_usage = isStatic ? GL_STATIC_DRAW : GL_DYNAMIC_DRAW;
m_type = type;
GL_CALL(glGenBuffers(1, &m_iboHandle));
LOGI("init: %d", m_iboHandle);
}
IndexBufferObject::~IndexBufferObject()
{
LOGI("destroy");
GL_CALL(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
GL_CALL(glDeleteBuffers(1, &m_iboHandle));
m_iboHandle = 0;
delete[] m_indices;
}
void IndexBufferObject::setIndices(void* indices, int bytes)
{
setIndices(indices, bytes, m_type);
}
void IndexBufferObject::setIndices(void* indices, int bytes, GLenum type)
{
m_indices = indices;
m_type = type;
m_indexNum = bytes > 0 ? bytes / getTypeSize() : 0;
m_bytes = bytes;
m_isDirty = true;
if (m_isBound)
{
applyBufferData();
}
}
void IndexBufferObject::bind()
{
GL_CALL(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_iboHandle));
if (m_isDirty)
{
applyBufferData();
}
m_isBound = true;
}
void IndexBufferObject::unbind()
{
GL_CALL(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
m_isBound = false;
}
void IndexBufferObject::applyBufferData()
{
GL_CALL(glBufferData(GL_ELEMENT_ARRAY_BUFFER, m_bytes, m_indices, m_usage));
//GLInspector::checkGLError("ibo: applyBufferData");
m_isDirty = false;
}
int IndexBufferObject::getTypeSize() {
switch (m_type) {
case GL_UNSIGNED_SHORT:
return 2;
case GL_UNSIGNED_INT:
return 4;
}
return 2;
}
} // namespace glcore
2.11 Mesh
Mesh 是网格类,用于管理顶点数据、索引、描述(或格式)等信息,由于 VBO 管理了顶点数据、IBO 管理了顶点索引、VAO 管理了顶点描述(或格式),因此 Mesh 只需管理 VBO、IBO、VAO。另外 IBO 和 VAO 是可选的,Mesh 中需要根据用户的行为调整渲染指令。
为方便用户快速创建平面网格,笔者提供了 MeshUtils 类,用户也可以根据该类提供的模板创建自己的网格。
mesh.h
cpp
#pragma once
#include <initializer_list>
#include "core_lib.h"
#include "index_buffer_object.h"
#include "shader_program.h"
#include "vertex_buffer_object.h"
#include "vertex_attribute.h"
#include "vertex_attributes.h"
using namespace std;
namespace glcore
{
/**
* 网格
* @author little fat sheep
*/
class Mesh
{
private:
VertexBufferObject* m_vbo; // 顶点属性缓冲对象
IndexBufferObject* m_ibo; // 顶点索引缓冲对象
GLenum m_mode = GL_TRIANGLES; // 渲染模式 (GL_TRIANGLES、GL_TRIANGLE_STRIP、GL_TRIANGLE_FAN等)
public:
Mesh(bool isStatic, initializer_list<VertexAttribute*> attributes);
Mesh(bool isStatic, VertexAttributes* attributes);
Mesh(bool useVao, bool isStatic, initializer_list<VertexAttribute*> attributes);
Mesh(bool useVao, bool isStatic, VertexAttributes* attributes);
~Mesh();
void setVertices(float* vertices, int bytes); // 设置顶点属性
void setIndices(void* indices, int bytes); // 设置顶点索引
void setIndices(void* indices, int bytes, GLenum type); // 设置顶点索引
void setMode(GLenum mode); // 设置渲染模式
void render(ShaderProgram* shader); // 渲染
};
} // namespace glcore
mesh.cpp
cpp
#include "glcore/gl_inspector.h"
#include "glcore/mesh.h"
#include "glcore/vertex_buffer_object_with_vao.h"
namespace glcore
{
Mesh::Mesh(bool isStatic, initializer_list<VertexAttribute*> attributes):
Mesh(true, isStatic, new VertexAttributes(attributes))
{
}
Mesh::Mesh(bool isStatic, VertexAttributes* attributes):
Mesh(true, isStatic, attributes)
{
}
Mesh::Mesh(bool useVao, bool isStatic, initializer_list<VertexAttribute*> attributes):
Mesh(useVao, isStatic, new VertexAttributes(attributes))
{
}
Mesh::Mesh(bool useVao, bool isStatic, VertexAttributes* attributes)
{
m_vbo = useVao ? new VertexBufferObjectWithVAO(isStatic, attributes) :
new VertexBufferObject(isStatic, attributes);
m_ibo = new IndexBufferObject(isStatic);
}
Mesh::~Mesh()
{
delete m_vbo;
delete m_ibo;
}
void Mesh::setVertices(float* vertices, int bytes)
{
m_vbo->setVertices(vertices, bytes);
}
void Mesh::setIndices(void* indices, int bytes)
{
m_ibo->setIndices(indices, bytes);
}
void Mesh::setIndices(void* indices, int bytes, GLenum type)
{
m_ibo->setIndices(indices, bytes, type);
}
void Mesh::setMode(GLenum mode)
{
m_mode = mode;
}
void Mesh::render(ShaderProgram* shader)
{
m_vbo->bind(shader);
if (m_ibo->getNumIndices() > 0) {
m_ibo->bind();
GL_CALL(glDrawElements(m_mode, m_ibo->getNumIndices(), m_ibo->getType(), nullptr));
m_ibo->unbind();
} else {
GL_CALL(glDrawArrays(m_mode, 0, m_vbo->getNumVertices()));
}
m_vbo->unbind(shader);
}
} // namespace glcore
mesh_utils.h
cpp
#pragma once
#include "mesh.h"
namespace glcore
{
/**
* 网格工具类
* @author little fat sheep
*/
class MeshUtils
{
public:
static Mesh* createRect(bool reverse);
private:
static float* getRectVertices(bool reverse);
};
} // namespace glcore
mesh_utils.cpp
cpp
#include "glcore/mesh_utils.h"
namespace glcore
{
Mesh* MeshUtils::createRect(bool reverse)
{
Mesh* mesh = new Mesh(true, {
VertexAttribute::Position(),
VertexAttribute::TexCoords(0)
});
float* vertices = getRectVertices(reverse);
mesh->setVertices(vertices, 4 * 5 * sizeof(float));
void* indices = new short[] { 0, 1, 2, 2, 3, 0 };
mesh->setIndices(indices, 6 * sizeof(short));
return mesh;
}
float* MeshUtils::getRectVertices(bool reverse)
{
if (reverse) {
return new float[] { // 中间渲染(FBO)使用
-1.0f, -1.0f, 0.0f, 0.0f, 0.0f, // 左下
1.0f, -1.0f, 0.0f, 1.0f, 0.0f, // 右下
1.0f, 1.0f, 0.0f, 1.0f, 1.0f, // 右上
-1.0f, 1.0f, 0.0f, 0.0f, 1.0f // 左上
};
}
return new float[] { // 终端渲染使用
-1.0f, -1.0f, 0.0f, 0.0f, 1.0f, // 左下
1.0f, -1.0f, 0.0f, 1.0f, 1.0f, // 右下
1.0f, 1.0f, 0.0f, 1.0f, 0.0f, // 右上
-1.0f, 1.0f, 0.0f, 0.0f, 0.0f // 左上
};
}
} // namespace glcore
2.12 GLTexture
封装 GLTexture 类是了方便用户进行纹理贴图。为了方便管理多渲染目标图层,定义了 TextureAction 接口,并提供 bind 函数,GLTexture、FBO 都继承了 TextureAction,用户自定义的渲染器或特效类也可以继承 TextureAction,将它们统一视为纹理活动(可绑定),这在特效叠加(或后处理)中非常有用,易于扩展。
texture_action.h
cpp
#pragma once
#include "core_lib.h"
#include "shader_program.h"
namespace glcore
{
/**
* 纹理活动 (纹理绑定、FBO绑定)
* @author little fat sheep
*/
class TextureAction
{
public:
virtual ~TextureAction() = default;
virtual void setTexParameter(GLint filter, GLint wrap) {}
virtual void setBindParameter(char* alias, GLenum unit) {}
virtual void bind(ShaderProgram* shader) = 0;
};
} // namespace glcore
gl_texture.h
cpp
#pragma once
#include "core_lib.h"
#include "shader_program.h"
#include "texture_action.h"
namespace glcore
{
/**
* 纹理贴图
* @author little fat sheep
*/
class GLTexture: public TextureAction
{
private:
GLuint m_textureHandle = 0; // 纹理句柄
int m_width = 0; // 纹理宽度
int m_height = 0; // 纹理高度
GLint m_filter = GL_LINEAR; // 滤波方式
GLint m_wrap = GL_CLAMP_TO_EDGE; // 环绕方式
const char* m_alias = ShaderProgram::UNIFORM_TEXTURE; // 纹理别名(着色器中变量名)
GLenum m_unit = 0; // 纹理单元 (可能有多个纹理)
bool m_isDirty = false; // 是否有脏数据 (纹理参数需要更新)
public:
GLTexture(int width, int height);
GLTexture(void *buffer, int width, int height);
~GLTexture() override;
void setTexture(const void *buffer);
void setTexParameter(GLint filter, GLint wrap) override;
void setBindParameter(char* alias, GLenum unit) override;
void bind(ShaderProgram* shader) override;
int getWidth() { return m_width; }
int getHeight() { return m_height; }
private:
void applyTexParameter();
};
} // namespace glcore
gl_texture.cpp
cpp
#include "glcore/gl_inspector.h"
#include "glcore/gl_texture.h"
namespace glcore
{
GLTexture::GLTexture(int width, int height):
m_width(width),
m_height(height)
{
}
GLTexture::GLTexture(void *buffer, int width, int height): GLTexture(width, height)
{
setTexture(buffer);
}
GLTexture::~GLTexture()
{
GL_CALL(glBindTexture(GL_TEXTURE_2D, 0));
if (m_textureHandle != 0) {
GL_CALL(glDeleteTextures(1, &m_textureHandle));
m_textureHandle = 0;
}
}
/**
* buffer 可以通过以下两种方式得到
* 1) bitmap.copyPixelsToBuffer(bytebuffer);
* void* buffer = env->GetDirectBufferAddress(bytebuffer);
* 2) AndroidBitmap_lockPixels(env, bitmap, &buffer)
*/
void GLTexture::setTexture(const void *buffer)
{
GL_CALL(glGenTextures(1, &m_textureHandle));
GL_CALL(glBindTexture(GL_TEXTURE_2D, m_textureHandle));
applyTexParameter();
GL_CALL(glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, m_width, m_height, 0,
GL_RGBA, GL_UNSIGNED_BYTE, buffer));
GL_CALL(glGenerateMipmap(GL_TEXTURE_2D));
GL_CALL(glBindTexture(GL_TEXTURE_2D, 0));
//GLInspector::checkGLError("setTexture");
}
void GLTexture::setTexParameter(GLint filter, GLint wrap)
{
m_filter = filter;
m_wrap = wrap;
m_isDirty = true;
}
void GLTexture::setBindParameter(char *alias, GLenum unit)
{
m_alias = alias;
m_unit = unit;
}
void GLTexture::bind(ShaderProgram *shader)
{
shader->setUniformi(m_alias, m_unit);
GL_CALL(glActiveTexture(GL_TEXTURE0 + m_unit));
GL_CALL(glBindTexture(GL_TEXTURE_2D, m_textureHandle));
if (m_isDirty)
{
applyTexParameter();
}
}
void GLTexture::applyTexParameter()
{
GL_CALL(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, m_filter));
GL_CALL(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, m_filter));
GL_CALL(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, m_wrap));
GL_CALL(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, m_wrap));
m_isDirty = false;
}
} // namespace glcore
2.13 FBO
FBO 是 Frame Buffer Object 的简称,即帧缓冲对象,主要用于离屏渲染、特效叠加,
frame_buffer_object.h
cpp
#pragma once
#include "core_lib.h"
#include "format.h"
#include "shader_program.h"
#include "texture_action.h"
namespace glcore
{
/**
* 帧缓冲对象 (简称FBO, 用于离屏渲染)
* @author little fat sheep
*/
class FrameBufferObject: public TextureAction
{
private:
Format* m_format; // 颜色格式
int m_width; // 缓冲区宽度
int m_height; // 缓冲区高度
bool m_hasDepth; // 是否有深度缓冲区
bool m_hasStencil; // 是否有模板缓冲区
GLuint m_frameBufferHandle; // 帧缓冲区句柄
GLuint m_depthBufferHandle; // 深度缓冲区句柄
GLuint m_stencilBufferHandle; // 模板缓冲区句柄
GLuint m_colorTextureHandle; // 颜色缓冲区句柄
GLint m_preFramebufferHandle; // 前一个帧缓冲区句柄
int m_preFramebufferViewPort[4]; // 前一个帧缓冲区视口
GLint m_filter = GL_LINEAR; // 滤波方式
GLint m_wrap = GL_CLAMP_TO_EDGE; // 环绕方式
const char* m_alias = ShaderProgram::UNIFORM_TEXTURE; // 纹理别名(着色器中变量名)
GLenum m_unit = 0; // 纹理单元 (可能有多个纹理)
bool m_isDirty = true; // 是否有脏数据 (纹理参数需要更新)
public:
FrameBufferObject(Format* format, int width, int height, bool hasDepth, bool hasStencil);
~FrameBufferObject() override;
void setTexParameter(GLint filter, GLint wrap) override;
void setBindParameter(char* alias, GLenum unit) override;
void begin();
void end();
void bind(ShaderProgram* shader) override;
private:
void applyTexParameter();
};
} // namespace glcore
frame_buffer_object.cpp
cpp
#include "glcore/frame_buffer_object.h"
#include "glcore/gl_inspector.h"
namespace glcore
{
FrameBufferObject::FrameBufferObject(Format* format, int width, int height, bool hasDepth, bool hasStencil)
{
m_format = format;
m_width = width;
m_height = height;
m_hasDepth = hasDepth;
m_hasStencil = hasStencil;
GL_CALL(glGenFramebuffers(1, &m_frameBufferHandle));
begin();
if (m_hasDepth)
{
GL_CALL(glGenRenderbuffers(1, &m_depthBufferHandle));
GL_CALL(glBindRenderbuffer(GL_RENDERBUFFER, m_depthBufferHandle));
GL_CALL(glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, width, height));
GL_CALL(glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_RENDERBUFFER, m_depthBufferHandle));
GL_CALL(glBindRenderbuffer(GL_RENDERBUFFER, 0));
}
if (m_hasStencil)
{
GL_CALL(glGenRenderbuffers(1, &m_stencilBufferHandle));
GL_CALL(glBindRenderbuffer(GL_RENDERBUFFER, m_stencilBufferHandle));
GL_CALL(glRenderbufferStorage(GL_RENDERBUFFER, GL_STENCIL_INDEX8, width, height));
GL_CALL(glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT,
GL_RENDERBUFFER, m_stencilBufferHandle));
GL_CALL(glBindRenderbuffer(GL_RENDERBUFFER, 0));
}
GL_CALL(glGenTextures(1, &m_colorTextureHandle));
GL_CALL(glBindTexture(GL_TEXTURE_2D, m_colorTextureHandle));
GL_CALL(glTexImage2D(GL_TEXTURE_2D, 0, m_format->getFormat(), m_width,
m_height, 0, m_format->getFormat(), m_format->getType(), nullptr));
applyTexParameter();
GL_CALL(glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, m_colorTextureHandle, 0));
end();
}
FrameBufferObject::~FrameBufferObject()
{
GL_CALL(glBindTexture(GL_TEXTURE_2D, 0));
GL_CALL(glDeleteTextures(1, &m_colorTextureHandle));
if (m_hasDepth) {
GL_CALL(glDeleteRenderbuffers(1, &m_depthBufferHandle));
}
if (m_hasStencil) {
GL_CALL(glDeleteRenderbuffers(1, &m_stencilBufferHandle));
}
GL_CALL(glDeleteFramebuffers(1, &m_frameBufferHandle));
}
void FrameBufferObject::setTexParameter(GLint filter, GLint wrap)
{
m_filter = filter;
m_wrap = wrap;
m_isDirty = true;
}
void FrameBufferObject::setBindParameter(char* alias, GLenum unit)
{
m_alias = alias;
m_unit = unit;
}
void FrameBufferObject::begin()
{
GL_CALL(glGetIntegerv(GL_FRAMEBUFFER_BINDING, &m_preFramebufferHandle));
GL_CALL(glGetIntegerv(GL_VIEWPORT, m_preFramebufferViewPort));
GL_CALL(glBindFramebuffer(GL_FRAMEBUFFER, m_frameBufferHandle));
GL_CALL(glViewport(0, 0, m_width, m_height));
}
void FrameBufferObject::end()
{
GL_CALL(glBindFramebuffer(GL_FRAMEBUFFER, m_preFramebufferHandle));
GL_CALL(glViewport(m_preFramebufferViewPort[0], m_preFramebufferViewPort[1],
m_preFramebufferViewPort[2], m_preFramebufferViewPort[3]));
}
void FrameBufferObject::bind(ShaderProgram* shader)
{
shader->setUniformi(m_alias, m_unit);
GL_CALL(glActiveTexture(GL_TEXTURE0 + m_unit));
GL_CALL(glBindTexture(GL_TEXTURE_2D, m_colorTextureHandle));
if (m_isDirty)
{
applyTexParameter();
}
}
void FrameBufferObject::applyTexParameter()
{
GL_CALL(glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, m_filter));
GL_CALL(glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, m_filter));
GL_CALL(glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, m_wrap));
GL_CALL(glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, m_wrap));
m_isDirty = false;
}
} // namespace glcore
format.h
cpp
#pragma once
#include "core_lib.h"
namespace glcore
{
/**
* 纹理格式
* @author little fat sheep
*/
class Format
{
private:
GLint format;
GLenum type;
public:
Format(GLint format, GLenum type);
GLint getFormat() { return format; }
GLenum getType() { return type; }
static Format* Alpha();
static Format* LuminanceAlpha();
static Format* RGB565();
static Format* RGBA4444();
static Format* RGB888();
static Format* RGBA8888();
};
} // namespace glcore
format.cpp
cpp
#include "glcore/format.h"
namespace glcore
{
Format::Format(GLint format, GLenum type):
format(format),
type(type)
{
}
Format *Format::Alpha()
{
return new Format(GL_ALPHA, GL_UNSIGNED_BYTE);
}
Format *Format::LuminanceAlpha()
{
return new Format(GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE);
}
Format *Format::RGB565()
{
return new Format(GL_RGB, GL_UNSIGNED_SHORT_5_6_5);
}
Format *Format::RGBA4444()
{
return new Format(GL_RGB, GL_UNSIGNED_SHORT_4_4_4_4);
}
Format *Format::RGB888()
{
return new Format(GL_RGB, GL_UNSIGNED_BYTE);
}
Format *Format::RGBA8888()
{
return new Format(GL_RGBA, GL_UNSIGNED_BYTE);
}
} // namespace glcore
3 JNI 相关
本节主要介绍 glcore 框架在初始化过程中所依附的工具类,如 View 载体、字符串加载工具、图片加载工具等,它们与 JNI 密切相关,不便于进行跨平台迁移,因此不能将它们归入 glcore 框架中。
如果读者对 JNI 不太熟悉,推荐阅读 → JNI环境搭建、JNI基础语法。
3.1 EGLSurfaceView
Android 中渲染内容需要 View 容器承载,有以下常用方案,详见 → 【OpenGL ES】不用GLSurfaceView,如何渲染图像。
- SurfaceView + SurfaceHolder.Callback
- TextureView + TextureView.SurfaceTextureListener
本框架采用 TextureView + TextureView.SurfaceTextureListener 方案,因为它在退后台后不会销毁 Surface,避免反复销毁和创建 Surface,稳定性更好。
Java 和 Native 中都有 EGLSurfaceView,它们是相互绑定的,前者为后者提供了 Surface、宽高、Renderer、Context 等属性,并管理了其生命周期。
EGLSurfaceView.java
java
package com.zhyan8.egldemo;
import android.content.Context;
import android.graphics.SurfaceTexture;
import android.util.Log;
import android.view.Choreographer;
import android.view.Surface;
import android.view.TextureView;
import androidx.annotation.NonNull;
/**
* @author little fat sheep
* 承载EGL环境的View, 类比GLSurfaceView
*/
public class EGLSurfaceView extends TextureView implements TextureView.SurfaceTextureListener {
private static final String TAG = "EGLSurfaceView";
private long mNativeHandle;
protected Surface mSurface;
private Choreographer mChoreographer = Choreographer.getInstance();
static {
System.loadLibrary("egl-native");
}
public EGLSurfaceView(Context context) {
super(context);
setSurfaceTextureListener(this);
mNativeHandle = nativeCreate();
}
public void setRenderer(long handle) {
Log.i(TAG, "setRenderer");
nativeSetRenderer(mNativeHandle, handle);
}
public void startRender() {
Log.i(TAG, "startRender");
mChoreographer.removeFrameCallback(mFrameCallback);
mChoreographer.postFrameCallback(mFrameCallback);
}
public void stopRender() {
Log.i(TAG, "stopRender");
mChoreographer.removeFrameCallback(mFrameCallback);
}
public void requestRender() {
mFrameCallback.doFrame(System.nanoTime());
}
@Override
public void onSurfaceTextureAvailable(@NonNull SurfaceTexture surface, int width, int height) {
Log.i(TAG, "onSurfaceTextureAvailable");
mSurface = new Surface(surface);
nativeSurfaceCreated(mNativeHandle, mSurface);
nativeSurfaceChanged(mNativeHandle, width, height);
}
@Override
public void onSurfaceTextureSizeChanged(@NonNull SurfaceTexture surface, int width, int height) {
Log.i(TAG, "onSurfaceTextureSizeChanged, width=" + width + ", height=" + height);
nativeSurfaceChanged(mNativeHandle, width, height);
}
@Override
public boolean onSurfaceTextureDestroyed(@NonNull SurfaceTexture surface) {
Log.i(TAG, "onSurfaceTextureDestroyed");
nativeSurfaceDestroyed(mNativeHandle);
return false;
}
@Override
public void onSurfaceTextureUpdated(@NonNull SurfaceTexture surface) {
}
@Override
protected void onDetachedFromWindow() {
super.onDetachedFromWindow();
Log.i(TAG, "onDetachedFromWindow");
stopRender();
setSurfaceTextureListener(null);
mSurface.release();
nativeDestroy(mNativeHandle);
mNativeHandle = 0;
}
private Choreographer.FrameCallback mFrameCallback = new Choreographer.FrameCallback() {
@Override
public void doFrame(long frameTimeNanos) {
mChoreographer.postFrameCallback(this);
nativeDrawFrame(mNativeHandle);
}
};
private native long nativeCreate();
private native void nativeSetRenderer(long viewHandle, long rendererHandle);
private native void nativeSurfaceCreated(long handle, Object surface);
private native void nativeSurfaceChanged(long handle, int width, int height);
private native void nativeDrawFrame(long handle);
private native void nativeSurfaceDestroyed(long handle);
private native void nativeDestroy(long handle);
}
jin_egl_surface_view.cpp
cpp
#include <android/log.h>
#include <android/native_window.h>
#include <android/native_window_jni.h>
#include <jni.h>
#include "glcore/core.h"
#define LOG_TAG "JNIBrige_EGLSurfaceView"
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)
using namespace glcore;
static jlong nativeCreate(JNIEnv *env, jobject thiz)
{
LOGI("nativeCreate");
EGLSurfaceView* view = new EGLSurfaceView();
return reinterpret_cast<jlong>(view);
}
static void nativeSetRenderer(JNIEnv *env, jobject thiz, jlong viewHandle, jlong rendererHandle)
{
LOGI("nativeSetRenderer");
EGLSurfaceView* view = reinterpret_cast<EGLSurfaceView*>(viewHandle);
EGLSurfaceView::Renderer* renderer = reinterpret_cast<EGLSurfaceView::Renderer*>(rendererHandle);
view->setRenderer(renderer);
}
static void nativeSurfaceCreated(JNIEnv* env, jobject thiz, jlong handle, jobject surface)
{
LOGI("nativeSurfaceCreated");
EGLSurfaceView* view = reinterpret_cast<EGLSurfaceView*>(handle);
ANativeWindow* window = ANativeWindow_fromSurface(env, surface);
app->setWindow(window);
view->surfaceCreated();
}
static void nativeSurfaceChanged(JNIEnv* env, jobject thiz, jlong handle, jint width, jint height)
{
LOGI("nativeSurfaceChanged");
EGLSurfaceView* view = reinterpret_cast<EGLSurfaceView*>(handle);
view->surfaceChanged(width, height);
}
static void nativeDrawFrame(JNIEnv* env, jobject thiz, jlong handle)
{
EGLSurfaceView* view = reinterpret_cast<EGLSurfaceView*>(handle);
view->drawFrame();
}
static void nativeSurfaceDestroyed(JNIEnv* env, jobject thiz, jlong handle)
{
LOGI("nativeSurfaceDestroyed");
EGLSurfaceView* view = reinterpret_cast<EGLSurfaceView*>(handle);
view->surfaceDestroy();
}
static void nativeDestroy(JNIEnv* env, jobject thiz, jlong handle)
{
LOGI("nativeDestroy");
EGLSurfaceView* view = reinterpret_cast<EGLSurfaceView*>(handle);
delete view;
}
static JNINativeMethod methods[] = {
{ "nativeCreate", "()J", (void*) nativeCreate },
{ "nativeSetRenderer", "(JJ)V", (void*) nativeSetRenderer },
{ "nativeSurfaceCreated", "(JLjava/lang/Object;)V", (void*) nativeSurfaceCreated },
{ "nativeSurfaceChanged", "(JII)V", (void*) nativeSurfaceChanged },
{ "nativeDrawFrame", "(J)V", (void*) nativeDrawFrame },
{ "nativeSurfaceDestroyed", "(J)V", (void*) nativeSurfaceDestroyed },
{ "nativeDestroy", "(J)V", (void*) nativeDestroy },
};
static int registerNativeMethods(JNIEnv* env) {
int result = -1;
jclass clazz = env->FindClass("com/zhyan8/egldemo/EGLSurfaceView");
if (clazz != NULL) {
jint len = sizeof(methods) / sizeof(methods[0]);
if (env->RegisterNatives(clazz, methods, len) == JNI_OK) {
result = 0;
}
}
return result;
}
jint JNI_OnLoad(JavaVM* vm, void* reserved) {
JNIEnv* env = NULL;
jint result = -1;
if (vm->GetEnv((void**) &env, JNI_VERSION_1_6) == JNI_OK) {
if (NULL != env && registerNativeMethods(env) == 0) {
result = JNI_VERSION_1_6;
}
}
return result;
}
3.2 StringUtils
StringUtils 用于加载顶点和片元着色器资源为字符串。
StringUtils.java
java
package com.zhyan8.egldemo;
import android.content.Context;
import android.util.Log;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
/**
* 字符串工具类
* @author little fat sheep
*/
public class StringUtils {
private static final String TAG = "BitmapUtils";
/**
* 根据资源路径读取字符串
* @param assetPath 资源路径, 如: "jelly_vert.glsl"
*/
public static String loadStringFromAsset(Context context, String assetPath) {
String str = "";
try (InputStream inputStream = context.getAssets().open(assetPath)) {
str = loadString(inputStream);
} catch (IOException e) {
Log.w(TAG, "loadString error, message=" + e.getMessage());
}
return str;
}
/**
* 根据资源id读取字符串
* @param rawId 资源id, 如: "R.raw.vertex_shader"
*/
public static String loadStringFromRaw(Context context, String rawId) {
if (rawId.startsWith("R.raw.")) {
rawId = rawId.substring(6); // Remove "R.raw."
}
int id = context.getResources().getIdentifier(rawId, "raw", context.getPackageName());
if (id == 0) {
Log.e(TAG, "loadBitmapFromRaw, resource is not found, rawId=" + rawId);
return null;
}
return loadStringFromRaw(context, id);
}
/**
* 根据资源id读取字符串
* @param rawId 资源id, 如: R.raw.vertex_shader
*/
public static String loadStringFromRaw(Context context, int rawId) {
String str = "";
try (InputStream inputStream = context.getResources().openRawResource(rawId)) {
str = loadString(inputStream);
} catch (IOException e) {
Log.w(TAG, "loadString error, message=" + e.getMessage());
}
return str;
}
private static String loadString(InputStream inputStream) {
StringBuilder sb = new StringBuilder();
try (BufferedReader br = new BufferedReader(new InputStreamReader(inputStream))) {
String line;
while ((line = br.readLine()) != null) {
sb.append(line).append("\n");
}
} catch (IOException e) {
Log.w(TAG, "loadString error, message=" + e.getMessage());
}
return sb.toString();
}
}
string_utils.h
cpp
#pragma once
/**
* String工具类
* @author little fat sheep
*/
class StringUtils
{
public:
/**
* 根据资源路径读取字符串
* @param asset 资源路径, 如: "vertex_shader.glsl"
*/
static const char* loadStringFromAsset(const char* asset);
/**
* 根据资源id读取字符串
* @param rawId 资源id, 如: "R.raw.vertex_shader"
*/
static const char* loadStringFromRaw(const char* rawId);
};
string_utils.cpp
cpp
#include <jni.h>
#include "glcore/core.h"
#include "jni/jni_refs.h"
#include "jni/string_utils.h"
using namespace glcore;
const char* StringUtils::loadStringFromAsset(const char* asset)
{
JNIEnv* env = app->jniEnv;
jobject context = app->context;
jstring assetStr = env->NewStringUTF(asset);
jclass clazz = env->FindClass("com/zhyan8/egldemo/StringUtils");
jmethodID method = LoadStringFromAssetMethodId(env);
jstring jstr = (jstring) env->CallStaticObjectMethod(clazz, method, context, assetStr);
const char* str = env->GetStringUTFChars(jstr, nullptr);
return str;
}
const char* StringUtils::loadStringFromRaw(const char* rawId)
{
JNIEnv* env = app->jniEnv;
jobject context = app->context;
jstring rawIdStr = env->NewStringUTF(rawId);
jclass clazz = env->FindClass("com/zhyan8/egldemo/StringUtils");
jmethodID method = LoadStringFromRawMethodId(env);
jstring jstr = (jstring) env->CallStaticObjectMethod(clazz, method, context, rawIdStr);
const char* str = env->GetStringUTFChars(jstr, nullptr);
return str;
}
3.3 BitmapUtils
BitmapUtils 用于加载图片资源为位图。
BitmapUtils.java
java
package com.zhyan8.egldemo;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.util.Log;
import java.io.IOException;
import java.io.InputStream;
/**
* Bitmap工具类
* @author little fat sheep
*/
public class BitmapUtils {
private static final String TAG = "BitmapUtils";
/**
* 根据资源路径读取bitmap
* @param assetPath 资源路径, 如: "textures/xxx.jpg"
*/
public static Bitmap loadBitmapFromAsset(Context context, String assetPath) {
Bitmap bitmap = null;
try (InputStream inputStream = context.getAssets().open(assetPath)) {
BitmapFactory.Options options = getOptions();
bitmap = BitmapFactory.decodeStream(inputStream, null, options);
} catch (IOException e) {
Log.e(TAG, "loadBitmapFromAsset error, message=" + e.getMessage());
}
return bitmap;
}
/**
* 根据资源id读取bitmap
* @param rawId 资源id, 如: "R.raw.xxx"
*/
public static Bitmap loadBitmapFromRaw(Context context, String rawId) {
if (rawId.startsWith("R.raw.")) {
rawId = rawId.substring(6); // Remove "R.raw."
}
int id = context.getResources().getIdentifier(rawId, "raw", context.getPackageName());
if (id == 0) {
Log.e(TAG, "loadBitmapFromRaw, resource is not found, rawId=" + rawId);
return null;
}
return loadBitmapFromRaw(context, id);
}
/**
* 根据资源id读取bitmap
* @param rawId 资源id, 如: R.raw.xxx
*/
public static Bitmap loadBitmapFromRaw(Context context, int rawId) {
Bitmap bitmap = null;
try (InputStream inputStream = context.getResources().openRawResource(rawId)) {
BitmapFactory.Options options = getOptions();
bitmap = BitmapFactory.decodeStream(inputStream, null, options);
} catch (IOException e) {
Log.e(TAG, "loadBitmapFromRaw error, message=" + e.getMessage());
}
return bitmap;
}
private static BitmapFactory.Options getOptions() {
BitmapFactory.Options options = new BitmapFactory.Options();
options.inScaled = false;
return options;
}
}
bitmap_utils.h
cpp
#pragma once
#include <jni.h>
struct BitmapData
{
void* buffer;
int width;
int height;
};
/**
* Bitmap工具类
* @author little fat sheep
*/
class BitmapUtils
{
public:
/**
* 根据资源路径读取bitmap
* @param asset 资源路径, 如: "textures/xxx.jpg"
*/
static BitmapData* loadBitmapDataFromAsset(const char* asset);
/**
* 根据资源id读取bitmap
* @param rawId 资源id, 如: "R.raw.xxx"
*/
static BitmapData* loadBitmapDataFromRaw(const char* rawId);
private:
static jobject loadBitmapFromAsset(JNIEnv* env, jobject context, const char* asset);
static jobject loadBitmapFromRaw(JNIEnv* env, jobject context, const char* rawId);
static BitmapData* getBitmapData(JNIEnv* env, jobject bitmap);
};
bitmap_utils.cpp
cpp
#include <android/bitmap.h>
#include <android/log.h>
#include <string>
#include "glcore/core.h"
#include "jni/bitmap_utils.h"
#include "jni/jni_refs.h"
#define LOG_TAG "Native: BitmapUtils"
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)
using namespace glcore;
BitmapData* BitmapUtils::loadBitmapDataFromAsset(const char* asset) {
JNIEnv* env = app->jniEnv;
jobject context = app->context;
jobject bitmap = loadBitmapFromAsset(env, context, asset);
if (!bitmap) {
LOGI("loadBitmapDataFromAsset, bitmap is null: %s", asset);
return nullptr;
}
return getBitmapData(env, bitmap);
}
BitmapData* BitmapUtils::loadBitmapDataFromRaw(const char* rawId)
{
JNIEnv* env = app->jniEnv;
jobject context = app->context;
jobject bitmap = loadBitmapFromRaw(env, context, rawId);
if (!bitmap) {
LOGI("loadBitmapDataFromRaw, bitmap is null: %s", rawId);
return nullptr;
}
return getBitmapData(env, bitmap);
}
jobject BitmapUtils::loadBitmapFromAsset(JNIEnv* env, jobject context, const char* asset)
{
jstring assetStr = env->NewStringUTF(asset);
jclass clazz = env->FindClass("com/zhyan8/egldemo/BitmapUtils");
jmethodID method = LoadBitmapFromAssetMethodId(env);
jobject bitmap = env->CallStaticObjectMethod(clazz, method, context, assetStr);
return bitmap;
}
jobject BitmapUtils::loadBitmapFromRaw(JNIEnv* env, jobject context, const char* rawId)
{
jstring rawIdStr = env->NewStringUTF(rawId);
jclass clazz = env->FindClass("com/zhyan8/egldemo/BitmapUtils");
jmethodID method = LoadBitmapFromRawMethodId(env);
jobject bitmap = env->CallStaticObjectMethod(clazz, method, context, rawIdStr);
return bitmap;
}
BitmapData* BitmapUtils::getBitmapData(JNIEnv* env, jobject bitmap)
{
AndroidBitmapInfo info;
if (AndroidBitmap_getInfo(env, bitmap, &info))
{
LOGI("getBitmapData, failed to get bitmap info");
return nullptr;
}
void* buffer;
if (AndroidBitmap_lockPixels(env, bitmap, &buffer)) {
LOGI("getBitmapData, failed to lock bitmap pixels");
return nullptr;
}
BitmapData* data = new BitmapData();
data->buffer = buffer;
data->width = info.width;
data->height = info.height;
return data;
}
3.4 jin_ref
jni_ref 提供了 StringUtils 和 BitmaUtils 的类路径、函数名、函数签名等信息。
jni_ref.h
cpp
#pragma once
#include <jni.h>
jmethodID LoadBitmapFromAssetMethodId(JNIEnv* env);
jmethodID LoadBitmapFromRawMethodId(JNIEnv* env);
jmethodID LoadStringFromAssetMethodId(JNIEnv* env);
jmethodID LoadStringFromRawMethodId(JNIEnv* env);
jmethodID GetMethodId(JNIEnv* env, const char* method[]);
jmethodID GetStaticMethodId(JNIEnv* env, const char* method[]);
jni_ref.c
cpp
#include "jni/jni_refs.h"
const char* loadBitmapFromAssetTab[] = {
"com/zhyan8/egldemo/BitmapUtils",
"loadBitmapFromAsset",
"(Landroid/content/Context;Ljava/lang/String;)Landroid/graphics/Bitmap;"
};
const char* loadBitmapFromRawTab[] = {
"com/zhyan8/egldemo/BitmapUtils",
"loadBitmapFromRaw",
"(Landroid/content/Context;Ljava/lang/String;)Landroid/graphics/Bitmap;"
};
const char* loadStringFromAssetTab[] = {
"com/zhyan8/egldemo/StringUtils",
"loadStringFromAsset",
"(Landroid/content/Context;Ljava/lang/String;)Ljava/lang/String;"
};
const char* loadStringFromRawTab[] = {
"com/zhyan8/egldemo/StringUtils",
"loadStringFromRaw",
"(Landroid/content/Context;Ljava/lang/String;)Ljava/lang/String;"
};
jmethodID LoadBitmapFromAssetMethodId(JNIEnv* env)
{
return GetStaticMethodId(env, loadBitmapFromAssetTab);
}
jmethodID LoadBitmapFromRawMethodId(JNIEnv* env)
{
return GetStaticMethodId(env, loadBitmapFromRawTab);
}
jmethodID LoadStringFromAssetMethodId(JNIEnv* env)
{
return GetStaticMethodId(env, loadStringFromAssetTab);
}
jmethodID LoadStringFromRawMethodId(JNIEnv* env)
{
return GetStaticMethodId(env, loadStringFromRawTab);
}
jmethodID GetMethodId(JNIEnv* env, const char* method[])
{
jclass clazz = env->FindClass(method[0]);
return env->GetMethodID(clazz, method[1], method[2]);
}
jmethodID GetStaticMethodId(JNIEnv* env, const char* method[])
{
jclass clazz = env->FindClass(method[0]);
return env->GetStaticMethodID(clazz, method[1], method[2]);
}
4 应用
本节将基于 glcore 框架写一个色散特效叠加果冻特效的 Demo,体验一下 glcore 的便捷之处。
4.1 MyRenderer
my_renderer.h
cpp
#pragma once
#include "glcore/core.h"
#include "dispersion_effect.h"
#include "jelly_effect.h"
using namespace glcore;
/**
* 自定义渲染器
* @author little fat sheep
*/
class MyRenderer : public EGLSurfaceView::Renderer
{
private:
DispersionEffect* m_dispersionEffect;
JellyEffect* m_jellyEffect;
long m_startTime = 0;
float m_runTime = 0.0f;
public:
MyRenderer();
~MyRenderer() override;
void onSurfaceCreated() override;
void onSurfaceChanged(int width, int height) override;
void onDrawFrame() override;
private:
long getTimestamp();
};
my_renderer.cpp
cpp
#include <android/log.h>
#include <chrono>
#include "custom/my_renderer.h"
#define LOG_TAG "Native: MyRenderer"
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)
using namespace glcore;
using namespace std::chrono;
MyRenderer::MyRenderer()
{
LOGI("init");
m_dispersionEffect = new DispersionEffect();
m_jellyEffect = new JellyEffect();
m_jellyEffect->setTexAction(m_dispersionEffect);
}
MyRenderer::~MyRenderer()
{
LOGI("destroy");
delete m_dispersionEffect;
delete m_jellyEffect;
}
void MyRenderer::onSurfaceCreated()
{
LOGI("onSurfaceCreated");
m_dispersionEffect->onCreate();
m_jellyEffect->onCreate();
GL_CALL(glClearColor(0.1f, 0.2f, 0.3f, 0.4f));
m_startTime = getTimestamp();
}
void MyRenderer::onSurfaceChanged(int width, int height)
{
LOGI("onSurfaceChanged, width: %d, height: %d", width, height);
GL_CALL(glViewport(0, 0, width, height));
m_dispersionEffect->onResize(width, height);
m_jellyEffect->onResize(width, height);
}
void MyRenderer::onDrawFrame()
{
m_runTime = (getTimestamp() - m_startTime) / 1000.0f;
GL_CALL(glClear(GL_COLOR_BUFFER_BIT));
m_dispersionEffect->onDraw(m_runTime);
m_jellyEffect->onDraw(m_runTime);
}
long MyRenderer::getTimestamp()
{
auto now = std::chrono::system_clock::now(); // 获取当前时间
auto duration = now.time_since_epoch(); // 转换为自纪元以来的时间
return duration_cast<milliseconds>(duration).count();
}
4.2 DispersionEffect
DispersionEffect 是色散特效。
dispersion_effect.h
cpp
#pragma once
#include "glcore/core.h"
using namespace glcore;
/**
* 色散特效
* @author little fat sheep
*/
class DispersionEffect: public TextureAction
{
private:
ShaderProgram* m_program;
Mesh* m_mesh;
GLTexture* m_glTexture;
FrameBufferObject* m_fbo;
public:
DispersionEffect();
~DispersionEffect() override;
void onCreate();
void onResize(int width, int height);
void onDraw(float runtime);
void bind(ShaderProgram* shader) override;
private:
void createProgram();
void createTexture();
};
dispersion_effect.cpp
cpp
#include <android/log.h>
#include "custom/dispersion_effect.h"
#include "jni/bitmap_utils.h"
#include "jni/string_utils.h"
#define LOG_TAG "Native: DispersionEffect"
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)
using namespace glcore;
DispersionEffect::DispersionEffect()
{
LOGI("init");
}
DispersionEffect::~DispersionEffect()
{
LOGI("destroy");
delete m_program;
delete m_mesh;
delete m_glTexture;
delete m_fbo;
}
void DispersionEffect::onCreate()
{
LOGI("onCreate");
createProgram();
createTexture();
m_mesh = MeshUtils::createRect(true);
m_fbo = new FrameBufferObject(Format::RGBA8888(), app->width, app->height, false, false);
}
void DispersionEffect::onResize(int width, int height)
{
LOGI("onResize, width: %d, height: %d", width, height);
}
void DispersionEffect::onDraw(float runtime)
{
m_fbo->begin();
m_program->bind();
m_program->setUniformf("u_time", runtime);
m_program->setUniformf("u_aspect", app->aspect);
m_glTexture->bind(m_program);
m_mesh->render(m_program);
m_fbo->end();
}
void DispersionEffect::bind(ShaderProgram* shader)
{
m_fbo->bind(shader);
}
void DispersionEffect::createProgram()
{
LOGI("createProgram");
const char* vertexCode = StringUtils::loadStringFromAsset("dispersion_vert.glsl");
const char* fragmentCode = StringUtils::loadStringFromAsset("dispersion_frag.glsl");
m_program = new ShaderProgram(vertexCode, fragmentCode);
}
void DispersionEffect::createTexture()
{
LOGI("createTexture");
BitmapData* data = BitmapUtils::loadBitmapDataFromAsset("girl.jpg");
m_glTexture = new GLTexture(data->buffer, data->width, data->height);
}
dispersion_vert.glsl
cpp
attribute vec4 a_position;
attribute vec2 a_texCoord0;
varying vec2 v_texCoord;
void main() {
gl_Position = a_position;
v_texCoord = a_texCoord0;
}
dispersion_frag.glsl
cpp
precision highp float;
uniform float u_aspect;
uniform float u_time;
uniform sampler2D u_texture;
varying vec2 v_texCoord;
vec2 getOffset() { // 偏移函数
float time = u_time * 1.5;
vec2 dire = vec2(sin(time), cos(time));
float strength = sin(u_time * 2.0) * 0.004;
return dire * strength * vec2(1.0, 1.0 / u_aspect);
}
void main() {
vec2 offset = getOffset();
vec4 color = texture2D(u_texture, v_texCoord);
color.r = texture2D(u_texture, v_texCoord + offset).r;
color.b = texture2D(u_texture, v_texCoord - offset).b;
gl_FragColor = color;
}
4.3 JellyEffect
JellyEffect 是果冻特效。
jelly_effect.h
cpp
#pragma once
#include "glcore/core.h"
using namespace glcore;
/**
* 果冻特效
* @author little fat sheep
*/
class JellyEffect
{
private:
ShaderProgram* m_program;
Mesh* m_mesh;
TextureAction* m_texAction;
public:
JellyEffect();
~JellyEffect();
void setTexAction(TextureAction* texAction);
void onCreate();
void onResize(int width, int height);
void onDraw(float runtime);
private:
void createProgram();
};
jelly_effect.cpp
cpp
#include <android/log.h>
#include "custom/jelly_effect.h"
#include "jni/bitmap_utils.h"
#include "jni/string_utils.h"
#define LOG_TAG "Native: JellyEffect"
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)
using namespace glcore;
JellyEffect::JellyEffect()
{
LOGI("init");
}
JellyEffect::~JellyEffect()
{
LOGI("destroy");
delete m_program;
delete m_mesh;
}
void JellyEffect::setTexAction(TextureAction* texAction)
{
m_texAction = texAction;
}
void JellyEffect::onCreate()
{
LOGI("onCreate");
createProgram();
m_mesh = MeshUtils::createRect(false);
}
void JellyEffect::onResize(int width, int height)
{
LOGI("onResize, width: %d, height: %d", width, height);
}
void JellyEffect::onDraw(float runtime)
{
m_program->bind();
m_program->setUniformf("u_time", runtime);
m_program->setUniformf("u_aspect", app->aspect);
m_texAction->bind(m_program);
m_mesh->render(m_program);
}
void JellyEffect::createProgram()
{
LOGI("createProgram");
const char* vertexCode = StringUtils::loadStringFromAsset("jelly_vert.glsl");
const char* fragmentCode = StringUtils::loadStringFromAsset("jelly_frag.glsl");
m_program = new ShaderProgram(vertexCode, fragmentCode);
}
jelly_vert.glsl
cpp
attribute vec4 a_position;
attribute vec2 a_texCoord0;
varying vec2 v_texCoord;
void main() {
gl_Position = a_position;
v_texCoord = a_texCoord0;
}
jelly_frag.glsl
cpp
precision highp float;
uniform float u_aspect;
uniform float u_time;
uniform sampler2D u_texture;
varying vec2 v_texCoord;
vec2 fun(vec2 center, vec2 uv) { // 畸变函数
vec2 dire = normalize(uv - center);
float dist = distance(uv, center);
vec2 uv1 = uv + sin(dist * 2.2 + u_time * 3.5) * 0.025;
return uv1;
}
void main() {
vec2 uv = vec2(v_texCoord.x, v_texCoord.y / u_aspect);
vec2 center = vec2(0.5, 0.5 / u_aspect);
vec2 uv1 = fun(center, uv);
uv1.y *= u_aspect;
gl_FragColor = texture2D(u_texture, uv1);
}
4.4 运行效果
运行效果如下,可以看到叠加了色散和果冻特效。
声明:本文转自【OpenGL ES】在Android上手撕一个mini版的渲染框架。