适用型号:stm32f103c8t6
编译器:GCC
传统的启动文件使用汇编语言实现,可读性很低,现在分析其内容,使用C语言重新实现一遍。
首先附上成品,使用C23标准:
c
#include <stddef.h>
#include <stdint.h>
#include <string.h>
// some macros
#define cast(__value, __type) ((__type)(__value))
#define ptr(__type) typeof(__type *)
#define array(__type, ...) typeof(__type[##__VA_ARGS__])
#define func(__ret, ...) typeof(__ret(__VA_ARGS__))
#define readonly(__type) typeof(const __type)
/**
* @syntax unified
* @cpu cortex-m3
* @fpu softvfp
* @thumb
*/
typedef func(void) inteHandlerType; // 定义中断处理函数类型
typedef readonly(ptr(inteHandlerType)) inteVectorType; // 定义中断向量表元素类型
array(inteVectorType) f_pfnVectors; // 声明 中断向量表
inteHandlerType Default_Handler; // 声明 默认中断处理函数
inteHandlerType Reset_Handler; // 声明 复位函数
extern func(void) SystemInit; // defined in @system_stm32f1xx.c
extern func(int) main; // defined in @main.c
extern func(void) __libc_init_array;
static func(void) data_init;
static func(void) bss_init;
// 栈顶地址
/* Highest address of the user mode stack */
extern uint8_t _estack; // 为了和 @sysmem.c 中的定义保持一致,使用uint8_t
// 定义在链接器脚本中的符号
/* defined in linker script */
extern uint32_t _sidata; /* start address for the initialization values of the .data section.*/
/* start address for the .data section. defined in linker script */
extern uint32_t _sdata;
/* end address for the .data section. defined in linker script */
extern uint32_t _edata;
/* start address for the .bss section. defined in linker script */
extern uint32_t _sbss;
/* end address for the .bss section. defined in linker script */
extern uint32_t _ebss;
readonly(uint32_t) BootRAM = 0xF108F85F;
/*******************************************************************************
*
* Provide weak aliases for each Exception handler to the Default_Handler.
* As they are weak aliases, any function with the same name will override
* this definition.
*
*******************************************************************************/
#define __HandlerAttribute [[gnu::weak]] [[gnu::alias("Default_Handler")]]
__HandlerAttribute func(void) NMI_Handler;
__HandlerAttribute func(void) HardFault_Handler;
__HandlerAttribute func(void) MemManage_Handler;
__HandlerAttribute func(void) BusFault_Handler;
__HandlerAttribute func(void) UsageFault_Handler;
__HandlerAttribute func(void) SVC_Handler;
__HandlerAttribute func(void) DebugMon_Handler;
__HandlerAttribute func(void) PendSV_Handler;
__HandlerAttribute func(void) SysTick_Handler;
__HandlerAttribute func(void) WWDG_IRQHandler;
__HandlerAttribute func(void) PVD_IRQHandler;
__HandlerAttribute func(void) TAMPER_IRQHandler;
__HandlerAttribute func(void) RTC_IRQHandler;
__HandlerAttribute func(void) FLASH_IRQHandler;
__HandlerAttribute func(void) RCC_IRQHandler;
__HandlerAttribute func(void) EXTI0_IRQHandler;
__HandlerAttribute func(void) EXTI1_IRQHandler;
__HandlerAttribute func(void) EXTI2_IRQHandler;
__HandlerAttribute func(void) EXTI3_IRQHandler;
__HandlerAttribute func(void) EXTI4_IRQHandler;
__HandlerAttribute func(void) DMA1_Channel1_IRQHandler;
__HandlerAttribute func(void) DMA1_Channel2_IRQHandler;
__HandlerAttribute func(void) DMA1_Channel3_IRQHandler;
__HandlerAttribute func(void) DMA1_Channel4_IRQHandler;
__HandlerAttribute func(void) DMA1_Channel5_IRQHandler;
__HandlerAttribute func(void) DMA1_Channel6_IRQHandler;
__HandlerAttribute func(void) DMA1_Channel7_IRQHandler;
__HandlerAttribute func(void) ADC1_2_IRQHandler;
__HandlerAttribute func(void) USB_HP_CAN1_TX_IRQHandler;
__HandlerAttribute func(void) USB_LP_CAN1_RX0_IRQHandler;
__HandlerAttribute func(void) CAN1_RX1_IRQHandler;
__HandlerAttribute func(void) CAN1_SCE_IRQHandler;
__HandlerAttribute func(void) EXTI9_5_IRQHandler;
__HandlerAttribute func(void) TIM1_BRK_IRQHandler;
__HandlerAttribute func(void) TIM1_UP_IRQHandler;
__HandlerAttribute func(void) TIM1_TRG_COM_IRQHandler;
__HandlerAttribute func(void) TIM1_CC_IRQHandler;
__HandlerAttribute func(void) TIM2_IRQHandler;
__HandlerAttribute func(void) TIM3_IRQHandler;
__HandlerAttribute func(void) TIM4_IRQHandler;
__HandlerAttribute func(void) I2C1_EV_IRQHandler;
__HandlerAttribute func(void) I2C1_ER_IRQHandler;
__HandlerAttribute func(void) I2C2_EV_IRQHandler;
__HandlerAttribute func(void) I2C2_ER_IRQHandler;
__HandlerAttribute func(void) SPI1_IRQHandler;
__HandlerAttribute func(void) SPI2_IRQHandler;
__HandlerAttribute func(void) USART1_IRQHandler;
__HandlerAttribute func(void) USART2_IRQHandler;
__HandlerAttribute func(void) USART3_IRQHandler;
__HandlerAttribute func(void) EXTI15_10_IRQHandler;
__HandlerAttribute func(void) RTC_Alarm_IRQHandler;
__HandlerAttribute func(void) USBWakeUp_IRQHandler;
/******************************************************************************
*
* The minimal vector table for a Cortex M3. Note that the proper constructs
* must be placed on this to ensure that it ends up at physical address
* 0x0000.0000.
*
******************************************************************************/
[[gnu::section(".isr_vector")]] // gnu extension to place the vector table in a specific address
array(inteVectorType) f_pfnVectors =
{
cast(&_estack, ptr(void)), /* Stack pointer */
Reset_Handler, /* Reset Handler */
NMI_Handler, /* NMI Handler */
HardFault_Handler, /* Hard Fault Handler */
MemManage_Handler, /* MPU Fault Handler */
BusFault_Handler, /* Bus Fault Handler */
UsageFault_Handler, /* Usage Fault Handler */
nullptr, nullptr, nullptr, nullptr, /* Reserved */
SVC_Handler, /* SVCall Handler */
DebugMon_Handler, /* Debug Monitor Handler */
nullptr, /* Reserved */
PendSV_Handler, /* PendSV Handler */
SysTick_Handler, /* SysTick Handler */
/* IRQ Handlers */
WWDG_IRQHandler,
PVD_IRQHandler,
TAMPER_IRQHandler,
RTC_IRQHandler,
FLASH_IRQHandler,
RCC_IRQHandler,
EXTI0_IRQHandler,
EXTI1_IRQHandler,
EXTI2_IRQHandler,
EXTI3_IRQHandler,
EXTI4_IRQHandler,
DMA1_Channel1_IRQHandler,
DMA1_Channel2_IRQHandler,
DMA1_Channel3_IRQHandler,
DMA1_Channel4_IRQHandler,
DMA1_Channel5_IRQHandler,
DMA1_Channel6_IRQHandler,
DMA1_Channel7_IRQHandler,
ADC1_2_IRQHandler,
USB_HP_CAN1_TX_IRQHandler,
USB_LP_CAN1_RX0_IRQHandler,
CAN1_RX1_IRQHandler,
CAN1_SCE_IRQHandler,
EXTI9_5_IRQHandler,
TIM1_BRK_IRQHandler,
TIM1_UP_IRQHandler,
TIM1_TRG_COM_IRQHandler,
TIM1_CC_IRQHandler,
TIM2_IRQHandler,
TIM3_IRQHandler,
TIM4_IRQHandler,
I2C1_EV_IRQHandler,
I2C1_ER_IRQHandler,
I2C2_EV_IRQHandler,
I2C2_ER_IRQHandler,
SPI1_IRQHandler,
SPI2_IRQHandler,
USART1_IRQHandler,
USART2_IRQHandler,
USART3_IRQHandler,
EXTI15_10_IRQHandler,
RTC_Alarm_IRQHandler,
USBWakeUp_IRQHandler,
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, /* Reserved */
cast(BootRAM, ptr(void))
/* @0x108. This is for boot in RAM mode for STM32F10x Medium Density devices. */
};
/**
* @brief This is the code that gets called when the processor receives an
* unexpected interrupt. This simply enters an infinite loop, preserving
* the system state for examination by a debugger.
*
* @param None
* @retval : None
*/
void Default_Handler(void)
{
while (true) {
/* Infinite loop */
}
}
/**
* @brief This is the code that gets called when the processor first
* starts execution following a reset event. Only the absolutely
* necessary set is performed, after which the application
* supplied main() routine is called.
* @param None
* @retval : None
*/
[[noreturn]] // the function will never return
void Reset_Handler(void)
{
/* Call the clock system initialization function */
SystemInit();
/* Initialize data and bss sections */
data_init();
bss_init();
/* Call static constructors */
__libc_init_array();
/* Call the application's entry point */
main();
/* Should never reach here */
while (true) {
/* Infinite loop */
}
}
/**
* @brief data sector initialization function
*
*/
static void data_init(void)
{
auto src = cast(&_sidata, ptr(uint8_t)); // flash addr
auto dst_start = cast(&_sdata, ptr(uint8_t)); // ram start
auto dst_end = cast(&_edata, ptr(uint8_t)); // ram end
size_t data_size = dst_end - dst_start; // get data size
memcpy(dst_start, src, data_size); // copy data from flash to ram
}
/**
* @brief bss sector zero initialization function
*
*/
/* BSS zero initialization function */
static void bss_init(void)
{
auto dst_start = cast(&_sbss, ptr(uint8_t)); // ram start
auto dst_end = cast(&_ebss, ptr(uint8_t)); // ram end
size_t bss_size = dst_end - dst_start; // get bss size
memset(dst_start, 0x00, bss_size); // clear bss section
}
以STM32CubeMX生成使用的CMake工具链的stm32f103c8t6的项目为例,有一个启动文件 startup_stm32f103xb.s
和链接器脚本 STM32F103XX_FLASH.ld
,启动文件中定义的内容是上电以后执行的第一件事情,而链接器脚本指定程序的链接方式和内存区域分配方式。
首先分析链接器文件:
ld
/* Entry Point */
ENTRY(Reset_Handler)
定义了入口函数,也即上电之后执行的第一个函数,此处为 Reset_Handler
。
ld
/* Specify the memory areas */
MEMORY
{
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 20K
FLASH (rx) : ORIGIN = 0x8000000, LENGTH = 64K
}
定义了内存区域,分别为:
- RAM 区域,可执行(x)、可读(r)、可写(w)的区域,大小为 20K;
- FLASH 区域,可读(r)、可执行(x),大小为 64K,起始地址为 0x8000000。
ld
/* Highest address of the user mode stack */
_estack = ORIGIN(RAM) + LENGTH(RAM); /* end of RAM */
定义程序堆栈起始地址 _estack
,由于堆栈是从高地址向低地址延伸,所以起始地址定义为 RAM 区域的结束位置。考虑到寻址方式为"word",因此在C语言中,可以使用 uint32_t
类型来表示。
ld
/* Generate a link error if heap and stack don't fit into RAM */
_Min_Heap_Size = 0x0; /* required amount of heap */
_Min_Stack_Size = 0x400; /* required amount of stack */
定义堆和栈的大小。如果需要使用 malloc
等动态内存分配,则分配的内存就位于堆中。此处不用,因此设为0。
然后是段定义:
ld
/* Define output sections */
SECTIONS
{
/*...... */
}
分为几个段:
ld
/* The startup code goes first into FLASH */
.isr_vector :
{
. = ALIGN(4);
KEEP(*(.isr_vector)) /* Startup code */
. = ALIGN(4);
} >FLASH
为中断向量表所在的地址
ld
/* Constant data goes into FLASH */
.rodata :
{
. = ALIGN(4);
*(.rodata) /* .rodata sections (constants, strings, etc.) */
*(.rodata*) /* .rodata* sections (constants, strings, etc.) */
. = ALIGN(4);
} >FLASH
定义const 变量存放在 Flash 中。
接下来的 .ARM.extab
、.ARM
、.preinit_array
、.init_array
、.fini_array
与C++有关,略过。
接着是
ld
/* used by the startup to initialize data */
_sidata = LOADADDR(.data);
定义符号 _sidata
,用于指定 .data
段在Flash中的起始地址,这样就可以在C代码文件中使用这个"变量"
ld
/* Initialized data sections goes into RAM, load LMA copy after code */
.data :
{
. = ALIGN(4);
_sdata = .; /* create a global symbol at data start */
*(.data) /* .data sections */
*(.data*) /* .data* sections */
*(.RamFunc) /* .RamFunc sections */
*(.RamFunc*) /* .RamFunc* sections */
. = ALIGN(4);
} >RAM AT> FLASH
此处定义了 .data
段,用于存放已经初始化过的全局变量,这些变量的值会存放在Flash中,在程序运行时,在启动文件中将其复制到RAM中的对应位置。
ld
.bss (NOLOAD) : ALIGN(4)
{
*(.bss)
*(.bss*)
*(COMMON)
. = ALIGN(4);
_ebss = .; /* define a global symbol at bss end */
__bss_end__ = _ebss;
PROVIDE( __bss_end = .);
} >RAM
定义了 .bss
段,用于存放未初始化的全局变量,这些变量的值在程序运行时会被初始化为0。
ld
/* User_heap_stack section, used to check that there is enough RAM left */
._user_heap_stack (NOLOAD) :
{
. = ALIGN(8);
PROVIDE ( end = . );
PROVIDE ( _end = . );
. = . + _Min_Heap_Size;
. = . + _Min_Stack_Size;
. = ALIGN(8);
} >RAM
定义了一个 .user_heap_stack
段,用于堆栈的分配,保存在RAM中。
ld
/* Remove information from the standard libraries */
/DISCARD/ :
{
libc.a:* ( * )
libm.a:* ( * )
libgcc.a:* ( * )
}
移除 libc.a
、libm.a
、libgcc.a
等标准库符号,因为使用newlib。
接着分析启动文件:
首先是
asm
.syntax unified
.cpu cortex-m3
.fpu softvfp
.thumb
定义了cpu、fpu、指令集等内容,略过。
然后
asm
.global g_pfnVectors
.global Default_Handler
相当于C语言中定声明了两个全局变量,第一个是中断向量组,第二个是默认的中断处理函数。中断向量组中是紧凑排列的各种中断函数的入口地址,我们知道所有的中断函数都是 void handler(void)
类型,因此它等价为一个函数指针数组,为了防止不小心修改,可以添加 const
限定符:
c
typedef void(*const inteFunp)(void);
const inteFunp g_pfnVectors[];
然后是
asm
/* start address for the initialization values of the .data section.
defined in linker script */
.word _sidata
/* start address for the .data section. defined in linker script */
.word _sdata
/* end address for the .data section. defined in linker script */
.word _edata
/* start address for the .bss section. defined in linker script */
.word _sbss
/* end address for the .bss section. defined in linker script */
.word _ebss
.equ BootRAM, 0xF108F85F
声明了几个 .word
类型的变量,相当于C语言中的 uint32_t
类型。这些符号定义在链接器脚本中,用于指定各个数据段的起始、终止地址。最后的 .equ BootRAM, 0xF108F85F
定义了从RAM中启动的地址,需要加在中断向量组的最后。
接着是 Reset_Handler
函数的定义,它是上电之后第一个执行的函数。下面是它的声明:
asm
.section .text.Reset_Handler // 定义代码段
.weak Reset_Handlel // 定义为弱符号
.type Reset_Handler, %function // 定义为函数类型
这一部分可以改写为C代码:
c
[[gnu::weak]] void Reset_Handler(void);
其中 [[gnu::weak]]
是C23语法,用于定义弱符号。
然后是函数体:
asm
Reset_Handler:
bl SystemInit // 调用 SystemInit 函数
// 从 Flash 中复制数据到 data 段
// 清零 bss 段
bl __libc_init_array // 调用 C++ 静态构造函数
bl main // 调用 main 函数,进入主程序
bx lr // 相当于 main 函数中的 return
可以改写为C代码:
c
void data_init(void);
void bss_init(void);
[[noreturn]] // c23 属性,标记函数永不返回
void Reset_Handler(void){
SystemInit();
data_init(); // 复制数据到data段
bss_init(); // 清零bss段
__libc_init_array(); // 调用C++静态构造函数
main(); // 进入主程序
while(true);
}
其中 data_init
和 bss_init
是我们自己定义的两个函数,用于初始化 .data
和 .bss
段,其汇编代码如下:
asm
/* Copy the data segment initializers from flash to SRAM */
ldr r0, =_sdata // r0 = _sdata;
ldr r1, =_edata // r1 = _edata;
ldr r2, =_sidata // r2 = _sidata;
movs r3, #0 // r3 = 0;
b LoopCopyDataInit // goto LoopCopyDataInit;
CopyDataInit: // CopyDataInit:
ldr r4, [r2, r3] // r4 = *(uint32_t*)(r2 + r3);
str r4, [r0, r3] // *(uint32_t*)(r0 + r2) = r4;
// // 两句合起来等价于:
// // *(uint32_t*)(r0 + r2) = *(uint32_t*)(r2 + r2);
adds r3, r3, #4 // r3 += 4;
LoopCopyDataInit: // LoopCopyDataInit:
adds r4, r0, r3 // r4 = r0 + r3;
cmp r4, r1 // cmp res(r4,r1); // 假设有个enum cmp用于存储两个数字比较情况
bcc CopyDataInit // if(cmp == less){ goto CopyDataInit; }
/* Zero fill the bss segment. */
ldr r2, =_sbss
ldr r4, =_ebss
movs r3, #0
b LoopFillZerobss
FillZerobss:
str r3, [r2]
adds r2, r2, #4
LoopFillZerobss:
cmp r2, r4
bcc FillZerobss
改写为C代码如下:
c
extern uint32_t &_sdata;
extern uint32_t &_edata;
extern uint32_t &_sidata;
uint32_t data_start = _sdata; // data段的起始地址
uint32_t data_end = _edata; // data段的结束地址
uint32_t source_addr = _sidata; // flash中data的数据的起始地址
uint32_t offset = 0;
// 以 word 为单位,也即4字节为单位,从 flash 中拷贝数据到 ram 中
while(offset< data_end){
uint32_t *src = (uint32_t *)(source_addr + offset);
uint32_t *dst = (uint32_t *)(data_start + offset);
*dst = *src;
offset += 4; // 指针偏移4字节,也即一个 word 的长度
}
// 清零部分略
可以看到,本质上就是把 flash 中的数据拷贝到 ram 中,拷贝的长度为 _edata - _sdata
,源地址为 flash 中的 _sidata
,目的地址为 ram 中的 _sdata
。清零部分同理,只不过是把拷贝改为设置为0.
因此,可以借助C库函数 memcpy
和 memset
来实现 data_init
和 bss_init
函数:
c
/* Data copy function */
static void data_init(void)
{
size_t data_size = _edata - _sdata; // get data size
memcpy(_sdata, _sidata, data_size); // copy data from flash to ram
}
/* BSS zero initialization function */
static void bss_init(void)
{
size_t bss_size = _ebss - _sbss; // get bss size
memset(_sbss, 0x00, bss_size); // clear bss section
}
然后是 Default_Handler
函数:
asm
/**
* @brief This is the code that gets called when the processor receives an
* unexpected interrupt. This simply enters an infinite loop, preserving
* the system state for examination by a debugger.
*
* @param None
* @retval : None
*/
.section .text.Default_Handler,"ax",%progbits
Default_Handler:
Infinite_Loop:
b Infinite_Loop
.size Default_Handler, .-Default_Handler
它是中断处理函数的默认实现,当发生未知中断时,它会进入一个无限循环,保持系统状态,等待调试器来查看。C语言实现为:
c
void Default_Handler(void){
while(true){}
}
最后是中断向量组定义:
asm
/******************************************************************************
*
* The minimal vector table for a Cortex M3. Note that the proper constructs
* must be placed on this to ensure that it ends up at physical address
* 0x0000.0000.
*
******************************************************************************/
.section .isr_vector,"a",%progbits
.type g_pfnVectors, %object
.size g_pfnVectors, .-g_pfnVectors
g_pfnVectors:
.word _estack
.word Reset_Handler
// ......
.word BootRAM /* @0x108. This is for boot in RAM mode for
STM32F10x Medium Density devices. */
以及其弱符号定义:
asm
.weak NMI_Handler
.thumb_set NMI_Handler,Default_Handler
.weak HardFault_Handler
.thumb_set HardFault_Handler,Default_Handler
.weak MemManage_Handler
.thumb_set MemManage_Handler,Default_Handler
// ......
改写为C代码:
c
// 函数声明
[[gnu::weak]] [[gnu::alias("Default_Handler")]] func(void) NMI_Handler;
[[gnu::weak]] [[gnu::alias("Default_Handler")]] func(void) HardFault_Handler;
// ......
[[gnu::weak]] [[gnu::alias("Default_Handler")]] func(void) USBWakeUp_IRQHandler;
// 向量组定义
[[gnu::section(".isr_vector")]]
const (*const f_pfnVectors[]) = {
(void(*)void)&_estack,
Reset_Handler,
// ...///
(void(*)void)BootRAM
};