graph neural architecture search图神经网络架构搜索,是一种自动化技术,其目标是让机器自动为特定的图数据和学习任务,找到最优的图神经网络模型结构,从而取代传统的人工设计模型的过程。
可以理解为用AI来设计AI在图神经网络领域的具体应用。
GraphNAS的核心组成部分
包含三个核心组成部分:
- 搜索空间
- 定义机器可以选择的所有可能的模型组件和连接方式
- 组件级搜索:搜索每个GNN层的最佳操作
- 架构级搜索:搜索模型的宏观连接结构
- 搜索策略
- 决定如何在搜索空间中高效的寻找性能优异的架构
- 常见策略
- 强化学习
- 进化算法
- 基于梯度的方法
- 贝叶斯优化
- 性能评估策略
- 评估搜索出的每个候选架构的性能
示例
常见的是用于节点分类任务,这里采用强化学习作为搜索策略。
例如基于强化学习的图神经网络架构搜索:
1. 搜索空间定义
python
search_space = {
'layer_type': ['gcn', 'gat', 'sage', 'gin', 'graph'],
'hidden_dim': [64, 128, 256],
'attention_heads': [1, 2, 4, 8],
'aggregation': ['mean', 'max', 'sum', 'lstm'],
'activation': ['relu', 'prelu', 'elu', 'tanh'],
'skip_connection': [True, False],
'dropout_rate': [0.0, 0.1, 0.3, 0.5],
'num_layers': [2, 3, 4] # 网络深度
}
2. 控制器设计 RNN
python
import torch
import torch.nn as nn
class Controller(nn.Module):
def __init__(self, vocab_sizes, hidden_dim=100):
super(Controller, self).__init__()
self.hidden_dim = hidden_dim
self.lstm = nn.LSTMCell(hidden_dim, hidden_dim)
# 为每个架构决策创建embedding和线性层
self.embeddings = nn.ModuleList([
nn.Embedding(vocab_size, hidden_dim) for vocab_size in vocab_sizes
])
self.decoders = nn.ModuleList([
nn.Linear(hidden_dim, vocab_size) for vocab_size in vocab_sizes
])
def forward(self, inputs):
hx, cx = torch.zeros(inputs.size(0), self.hidden_dim), \
torch.zeros(inputs.size(0), self.hidden_dim)
actions = []
log_probs = []
for i, (emb, dec) in enumerate(zip(self.embeddings, self.decoders)):
# 通过LSTM处理
hx, cx = self.lstm(inputs, (hx, cx))
# 生成动作概率
logits = dec(hx)
prob = F.softmax(logits, dim=-1)
# 采样动作
action = torch.multinomial(prob, 1).squeeze()
log_prob = F.log_softmax(logits, dim=-1)
actions.append(action)
log_probs.append(log_prob.gather(1, action.unsqueeze(1)).squeeze())
# 准备下一时间步的输入
inputs = emb(action)
return actions, log_probs
3. 可微分GNN架构实现
python
import torch.nn.functional as F
from torch_geometric.nn import GCNConv, GATConv, SAGEConv, GINConv
class SearchableGNN(nn.Module):
def __init__(self, num_features, num_classes, architecture_decision):
super(SearchableGNN, self).__init__()
self.layers = nn.ModuleList()
self.architecture = architecture_decision
# 解析架构决策
num_layers = architecture_decision['num_layers']
layer_types = architecture_decision['layer_type']
hidden_dims = architecture_decision['hidden_dim']
# 构建GNN层
in_dim = num_features
for i in range(num_layers):
layer_type = layer_types[i]
out_dim = hidden_dims[i]
if layer_type == 'gcn':
layer = GCNConv(in_dim, out_dim)
elif layer_type == 'gat':
heads = architecture_decision['attention_heads'][i]
layer = GATConv(in_dim, out_dim, heads=heads, concat=True)
out_dim = out_dim * heads
elif layer_type == 'sage':
layer = SAGEConv(in_dim, out_dim)
elif layer_type == 'gin':
layer = GINConv(
nn.Sequential(
nn.Linear(in_dim, out_dim),
nn.ReLU(),
nn.Linear(out_dim, out_dim)
)
)
self.layers.append(layer)
in_dim = out_dim
# 分类层
self.classifier = nn.Linear(in_dim, num_classes)
self.dropout = architecture_decision['dropout_rate']
def forward(self, x, edge_index):
for i, layer in enumerate(self.layers):
x = layer(x, edge_index)
x = F.relu(x) # 使用ReLU激活
x = F.dropout(x, p=self.dropout, training=self.training)
return self.classifier(x)
4. 搜索算法
python
class GraphNAS:
def __init__(self, data, num_features, num_classes):
self.data = data
self.num_features = num_features
self.num_classes = num_classes
# 控制器参数:7个决策点
vocab_sizes = [
len(search_space['layer_type']), # 层类型选择
len(search_space['hidden_dim']), # 隐藏维度
len(search_space['attention_heads']), # 注意力头数
len(search_space['aggregation']), # 聚合方式
len(search_space['activation']), # 激活函数
len(search_space['skip_connection']), # 跳跃连接
len(search_space['dropout_rate']) # dropout率
]
self.controller = Controller(vocab_sizes)
self.optimizer = torch.optim.Adam(self.controller.parameters(), lr=0.001)
def decode_architecture(self, actions):
"""将控制器的动作解码为具体的架构参数"""
architecture = {}
architecture['layer_type'] = [search_space['layer_type'][actions[0]]]
architecture['hidden_dim'] = [search_space['hidden_dim'][actions[1]]]
architecture['attention_heads'] = [search_space['attention_heads'][actions[2]]]
architecture['aggregation'] = search_space['aggregation'][actions[3]]
architecture['activation'] = search_space['activation'][actions[4]]
architecture['skip_connection'] = search_space['skip_connection'][actions[5]]
architecture['dropout_rate'] = search_space['dropout_rate'][actions[6]]
architecture['num_layers'] = 2 # 固定为2层简化示例
return architecture
def evaluate_architecture(self, architecture):
"""评估特定架构的性能"""
model = SearchableGNN(self.num_features, self.num_classes, architecture)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
criterion = nn.CrossEntropyLoss()
# 快速训练和验证(实际应用中会训练更多轮次)
model.train()
for epoch in range(50): # 简化训练过程
optimizer.zero_grad()
out = model(self.data.x, self.data.edge_index)
loss = criterion(out[self.data.train_mask], self.data.y[self.data.train_mask])
loss.backward()
optimizer.step()
# 在验证集上评估
model.eval()
with torch.no_grad():
logits = model(self.data.x, self.data.edge_index)
pred = logits.argmax(dim=1)
val_acc = (pred[self.data.val_mask] == self.data.y[self.data.val_mask]).float().mean()
return val_acc.item()
def search(self, num_episodes=100):
"""执行架构搜索"""
best_accuracy = 0
best_architecture = None
for episode in range(num_episodes):
# 控制器生成架构
inputs = torch.zeros(1, self.controller.hidden_dim)
actions, log_probs = self.controller(inputs)
# 解码架构
architecture = self.decode_architecture([a.item() for a in actions])
# 评估架构
accuracy = self.evaluate_architecture(architecture)
# 强化学习更新:准确性作为奖励
reward = accuracy
baseline = 0.8 # 简单的基线
advantage = reward - baseline
# 计算策略梯度
policy_loss = []
for log_prob in log_probs:
policy_loss.append(-log_prob * advantage)
policy_loss = torch.stack(policy_loss).sum()
# 更新控制器
self.optimizer.zero_grad()
policy_loss.backward()
self.optimizer.step()
# 记录最佳架构
if accuracy > best_accuracy:
best_accuracy = accuracy
best_architecture = architecture
print(f'Episode {episode+1}: Accuracy = {accuracy:.4f}, '
f'Best = {best_accuracy:.4f}')
return best_architecture, best_accuracy
5. 运行搜索
python
# 初始化搜索
graph_nas = GraphNAS(data, num_features=1433, num_classes=7)
# 开始搜索
best_arch, best_acc = graph_nas.search(num_episodes=50)
print("搜索完成!")
print(f"最佳架构: {best_arch}")
print(f"最佳准确率: {best_acc:.4f}")
6. 搜索结构示例
经过搜索后,会发现类似这样的最有架构:
python
best_architecture = {
'layer_type': ['gat', 'gcn'], # 第一层用GAT,第二层用GCN
'hidden_dim': [256, 128], # 隐藏维度递减
'attention_heads': [8, 1], # 第一层8头注意力
'aggregation': 'mean',
'activation': 'elu',
'skip_connection': True,
'dropout_rate': 0.3,
'num_layers': 2
}
效率上搜索过程计算大。