首先看一下KL的基础公式
KL
KL1:
大模型的KL一般是反向的:
\[KL(\pi_\theta||\pi_{ref}) = E_{x\sim\pi_\theta(\cdot|o_{<t})}log\frac{\pi_\theta(x|o_{<t})}{\pi_{ref}(x|o_{<t})} \]
\(x\sim\pi_\theta(\cdot|o_{<t})\) 代表 当前模型根据前t-1个token采样得到第t个token x
KL3(GRPO使用的无偏,低方差KL1估计) http://joschu.net/blog/kl-approx.html:
\[KL(\pi_\theta||\pi_{ref}) = \mathbb{E}{x\sim\pi\theta(\cdot|o_{<t})}\frac{\pi_{ref}}{\pi_{\theta}} - log(\frac{\pi_{ref}}{\pi_{\theta}})-1 \]
- 正向KL :倾向于使模型分布 Q 覆盖目标分布 P 的所有支持点,适合于需要模型分布更广泛覆盖的情况。
- 反向KL :倾向于使模型分布 Q 集中在目标分布 P 的高概率区域,适合于生成任务,能够提高生成样本的质量和稳定性。
因此,在大语言模型和生成任务中,反向KL通常更受青睐。
不同RL算法 loss的计算
对于q的第\(i\)个sample的第\(t\)个token的loss: \(loss_{i,t}=pg\loss{i,t}+entropy\loss{i, t}+kl\loss{i,t}\)
再对一个batch中所有的token loss \(loss_{i,t}\)做聚合agg,得到这个batch的整体loss,可用于后续的反向传播和模型更新。
每个token的loss | \(pg\loss{i,t}\) | \(kl\loss{i,t}\) | loss agg mode |
---|---|---|---|
PPO | \(\max(IS_{i,t}*-A_{i,t},clip(IS_{i,t})*-A_{i,t})\) | \(r_t=-\mathbb{D1}{KL}(\pi{old}||\pi_{ref})+r_t\) | \(\frac{1}{G}\sum_{i=1}^G\frac{1}{|o_i|}\sum_{t=1}^{|o_i|}loss_{i,t}\) seq-mean-token-mean |
Dual-clip PPO | for A<0, \(\min(\max(IS_{i,t}*-A_{i,t},clip(IS_{i,t})*-A), clip\_c*-A)\) | \(r_t=-\mathbb{D1}{KL}(\pi{old}||\pi_{ref})+r_t\) | \(\frac{1}{G}\sum_{i=1}^G\frac{1}{|o_i|}\sum_{t=1}^{|o_i|}loss_{i,t}\) seq-mean-token-mean |
GRPO | \(\max(IS_{i,t}*-A_{i,t},clip(IS_{i,t})*-A_{i,t})\) | \(\beta*\mathbb{D3}{KL}(\pi{\theta}||\pi_{ref})\) | \(\frac{1}{G}\sum_{i=1}^G\frac{1}{|o_i|}\sum_{t=1}^{|o_i|}loss_{i,t}\) seq-mean-token-mean |
GSPO | \(IS_{i,t} = sg[\frac{\pi_{\theta}(o_i|q)}{\pi_{old}(o_i|q)}]*\frac{\pi_\theta(o_{i,t}|q,o_{i,<t})}{sg[\pi_{\theta}(o_{i,t}|q,o_{i,<t})]}\) \(\max(IS_{i,t}*-A_{i,t},clip(IS_{i,t})*-A_{i,t})\) | \(\beta*\mathbb{D3}{KL}(\pi{\theta}||\pi_{ref})\) | \(\frac{1}{G}\sum_{i=1}^G\frac{1}{|o_i|}\sum_{t=1}^{|o_i|}loss_{i,t}\) seq-mean-token-mean |
DAPO | \(\max(IS_{i,t}*-A_{i,t},clip(IS_{i,t})*-A_{i,t})\) | \(\beta*\mathbb{D3}{KL}(\pi{\theta}||\pi_{ref})\) | \(\frac{1}{\sum_{i=1}^G|o_i|}\sum_{i=1}^G\sum_{t=1}^{|o_i|}loss_{i,t}\) token-mean |
PPO
优化目标:
\[J = \mathbb{E}{o\sim\pi{old}}\frac{1}{|o|}\sum_{i=1}^{|o|} [\min(\frac{\pi_{\theta}(o_i|o_{<i}, q)}{\pi_{old}(o_i|o_{<i}, q)}A_i, clip(\frac{\pi_{\theta}(o_i|o_{<i}, q)}{\pi_{old}(o_i|o_{<i}, q)}, 1-\epsilon, 1+\epsilon)A_i] \]
优势: GAE
递推公式,t步的累积优势=t步的优势+ t+1步的累积优势=t步及之后 每一步的优势=t步及之后所有的奖励-第t步的预计奖励
\[\begin{aligned} A_t &= (r_t+\gamma V_{t+1}-V_t)+\gamma A_{t+1}\\ A_t &= \sum_{i=t}^T \gamma ^{i-t}(r_t+\gamma V_{t+1}-V_t)\\ A_t &= r_t+\gamma r_{t+1}+\gamma^2 r_{t+2}+...+\gamma^{T-t}r_T-V_t\\ \end{aligned} \]
奖励:
\[r_t=\begin{cases}-KL(\pi_{old}||\pi_{ref}), &t\neq T \\ -KL(\pi_{old}||\pi_{ref})+RM(q,o_i), &t=T \end{cases} \]
verl/trainer/ppo/ray_trainer.py
verl | 如何在奖励中添加KL惩罚项?
python
###################################################
# 将KL惩罚loss应用到reward中。原始的reward是[0, 0, 0, ..., RM(q,o_i)]
# return KL(\pi_old||\pi_{ref}) + reward
###################################################
def apply_kl_penalty(data: DataProto, kl_ctrl: core_algos.AdaptiveKLController, kl_penalty="kl"):
"""Apply KL penalty to the token-level rewards.
This function computes the KL divergence between the reference policy and current policy,
then applies a penalty to the token-level rewards based on this divergence.
Args:
data (DataProto): The data containing batched model outputs and inputs.
kl_ctrl (core_algos.AdaptiveKLController): Controller for adaptive KL penalty.
kl_penalty (str, optional): Type of KL penalty to apply. Defaults to "kl".
Returns:
tuple: A tuple containing:
- The updated data with token-level rewards adjusted by KL penalty
- A dictionary of metrics related to the KL penalty
"""
response_mask = data.batch["response_mask"]
token_level_scores = data.batch["token_level_scores"]
batch_size = data.batch.batch_size[0]
# compute kl between ref_policy and current policy
# When apply_kl_penalty, algorithm.use_kl_in_reward=True, so the reference model has been enabled.
kld = core_algos.kl_penalty(
data.batch["old_log_probs"], data.batch["ref_log_prob"], kl_penalty=kl_penalty
) # (batch_size, response_length)
kld = kld * response_mask
beta = kl_ctrl.value
token_level_rewards = token_level_scores - beta * kld
KL
\[KL(\pi_{old}||\pi_{ref}) = log(\frac{\pi_{old}(o_t|q, o_{<t})}{\pi_{ref}(o_t|q, o_{<t})}) \]
PPO的KL散度是old到ref的
PPO的代码实现详见下面的Dual-clip PPO(PPO的改进版)
Dual-clip PPO
https://arxiv.org/pdf/1912.09729:对A<0的token的重要性采样IS做clip
论文发现当A<0时,重要性采样的比值*A可以是负无穷,这会导致训练不稳定(梯度爆炸)的现象,因此在ppo的clip上,对于A<0又进一步添加了新的clip (clip_ratio_c)。
\[\mathrm{per\ token\ objection} = \begin{cases} \min(IS*A, clip(IS, 1-\epsilon, 1+\epsilon)*A), &A\geq0\\ \max(\min(IS*A, clip(IS, 1-\epsilon, 1+\epsilon)*A), clip\_ratio\_c*A), &A<0\\ \end{cases} \]
代码:
整体的ppo_loss是由pg_loss + kl_loss + entropy_loss构成,不同的RL方法pg_loss, kl_loss的计算方法是不同的。
- pg_loss:具体于
verl/trainer/ppo/core_algos.py
(我将在dual-clip ppo和gspo部分介绍对应的pg_loss代码)。 - kl_loss:同样位于
verl/trainer/ppo/core_algos.py
(我将会在grpo部分介绍具体的low_var_kl代码)。
verl/verl/workers/roles/utils/losses.py
: ppo_loss的计算
python
######################################################
# 此函数用于计算整体的actor loss
######################################################
def ppo_loss(config: ActorConfig, model_output, data: TensorDict, dp_group=None):
log_prob = model_output["log_probs"]
entropy = model_output.get("entropy", None)
log_prob = no_padding_2_padding(log_prob, data) # (bsz, response_length)
if entropy is not None:
entropy = no_padding_2_padding(entropy, data) # (bsz, response_length)
metrics = {}
response_mask = data["response_mask"].to(bool)
# compute policy loss
old_log_prob = data["old_log_probs"]
advantages = data["advantages"]
loss_agg_mode = config.loss_agg_mode
loss_mode = config.policy_loss.get("loss_mode", "vanilla")
policy_loss_fn = get_policy_loss_fn(loss_mode)
# 调用下面的计算pg_loss的代码框
pg_loss, pg_clipfrac, ppo_kl, pg_clipfrac_lower = policy_loss_fn(
old_log_prob=old_log_prob,
log_prob=log_prob,
advantages=advantages,
response_mask=response_mask,
loss_agg_mode=loss_agg_mode,
config=config,
)
metrics.update(
{
"pg_loss": pg_loss.detach().item(),
"pg_clipfrac": pg_clipfrac.detach().item(),
"ppo_kl": ppo_kl.detach().item(),
"pg_clipfrac_lower": pg_clipfrac_lower.detach().item(),
}
)
policy_loss = pg_loss
# 是否使用entropy loss
# add entropy loss
if entropy is not None:
entropy_loss = agg_loss(loss_mat=entropy, loss_mask=response_mask, loss_agg_mode=loss_agg_mode)
entropy_coeff = config.entropy_coeff
# token的entropy越大越好,而loss是越小越好,因此是 减去 entropy
policy_loss -= entropy_coeff * entropy_loss
# 是否使用KL loss(grpo/gspo使用,ppo/dapo不使用)
# add kl loss
if config.use_kl_loss:
ref_log_prob = data["ref_log_prob"]
# compute kl loss
kld = kl_penalty(logprob=log_prob, ref_logprob=ref_log_prob, kl_penalty=config.kl_loss_type)
kl_loss = agg_loss(loss_mat=kld, loss_mask=response_mask, loss_agg_mode=config.loss_agg_mode)
policy_loss += kl_loss * config.kl_loss_coef
metrics["kl_loss"] = kl_loss.detach().item()
metrics["kl_coef"] = config.kl_loss_coef
return policy_loss, metrics
verl/trainer/ppo/core_algos.py
不同的RL方法计算pg_loss是不同的,这里的是ppo的pg_loss,后面还会介绍gspo的pg_loss的实现。
python
######################################################
# 此函数用于计算pg_loss,并不计算KL惩罚项
######################################################
@register_policy_loss("vanilla") # type: ignore[arg-type]
def compute_policy_loss_vanilla(
old_log_prob: torch.Tensor,
log_prob: torch.Tensor,
advantages: torch.Tensor,
response_mask: torch.Tensor,
loss_agg_mode: str = "token-mean",
config: Optional[DictConfig | AlgoConfig] = None,
rollout_is_weights: torch.Tensor | None = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Compute the clipped policy objective and related metrics for PPO.
Adapted from
https://github.com/huggingface/trl/blob/main/trl/trainer/ppo_trainer.py#L1122
Args:
old_log_prob (torch.Tensor):
Log-probabilities of actions under the old policy, shape (batch_size, response_length).
log_prob (torch.Tensor):
Log-probabilities of actions under the current policy, shape (batch_size, response_length).
advantages (torch.Tensor):
Advantage estimates for each action, shape (batch_size, response_length).
response_mask (torch.Tensor):
Mask indicating which tokens to include in the loss, shape (batch_size, response_length).
loss_agg_mode (str, optional):
Aggregation mode for `agg_loss`. Defaults to "token-mean".
config: `(verl.trainer.config.ActorConfig)`:
config for the actor.
rollout_log_probs: `(torch.Tensor)`:
log probabilities of actions under the rollout policy, shape (batch_size, response_length).
"""
assert config is not None
assert not isinstance(config, AlgoConfig)
clip_ratio = config.clip_ratio # Clipping parameter ε for standard PPO. See https://arxiv.org/abs/1707.06347.
clip_ratio_low = config.clip_ratio_low if config.clip_ratio_low is not None else clip_ratio
clip_ratio_high = config.clip_ratio_high if config.clip_ratio_high is not None else clip_ratio
clip_ratio_c = config.get( # Lower bound of the ratio for dual-clip PPO. See https://arxiv.org/pdf/1912.09729.
"clip_ratio_c", 3.0
)
cliprange = clip_ratio
cliprange_low = clip_ratio_low
cliprange_high = clip_ratio_high
assert clip_ratio_c > 1.0, (
"The lower bound of the clip_ratio_c for dual-clip PPO should be greater than 1.0,"
+ f" but get the value: {clip_ratio_c}."
)
# 计算每一个token的重要性采样的比值的log
# log(\pi_{\theta}(o_{i,t}|q,o_{i,<t}))-log(\pi_{old}(o_{i,t}|q,o_{i<t}))
negative_approx_kl = log_prob - old_log_prob
# 对IS的log做clip,避免过大或过小
# Clamp negative_approx_kl for stability
negative_approx_kl = torch.clamp(negative_approx_kl, min=-20.0, max=20.0)
# 这里ratio是真正的IS 重要性采样
ratio = torch.exp(negative_approx_kl)
# 计算出-IS在token-level上的均值
ppo_kl = verl_F.masked_mean(-negative_approx_kl, response_mask)
######################################################
# 下面开始计算pg_loss=
#A>0, max(ratio*-A, clip(ratio, 1-\epsilon_low, 1+\epsilon_high)*-A)
#A<0, min(max(ratio*-A, clip(ratio, 1-\epsilon_low, 1+\epsilon_high)*-A), clip_ratio_c*-A)
######################################################
pg_losses1 = -advantages * ratio
if cliprange_low is None:
cliprange_low = cliprange
if cliprange_high is None:
cliprange_high = cliprange
# clip后的loss
pg_losses2 = -advantages * torch.clamp(
ratio, 1 - cliprange_low, 1 + cliprange_high
) # - clip(ratio, 1-cliprange, 1+cliprange) * A
# ppo per token loss
clip_pg_losses1 = torch.maximum(
pg_losses1, pg_losses2
) # max(-ratio * A, -clip(ratio, 1-cliprange, 1+cliprange) * A)
# 计算被才剪掉的token在 这个batch的所有未mask的token的比例(axis=None)【常数】
pg_clipfrac = verl_F.masked_mean(torch.gt(pg_losses2, pg_losses1).float(), response_mask)
# 这里是dual-clip PPO提出,使用clip_ratio_c限制A<0的token的loss
pg_losses3 = -advantages * clip_ratio_c
# min(max(ratio*-A, clip(ratio, 1-\epsilon_low, 1+\epsilon_high)*-A), clip_ratio_c*-A)
clip_pg_losses2 = torch.min(pg_losses3, clip_pg_losses1)
# 记录在传统ppo下,进一步裁减的A<0的IS大于clip_ratio_c的token在 这个batch的所有未mask的token的比例【常数】
pg_clipfrac_lower = verl_F.masked_mean(
torch.gt(clip_pg_losses1, pg_losses3) * (advantages < 0).float(), response_mask
)
# pg_losses是分段函数(记录每个token的loss),A<0时用clip_pg_losses2, A>=0时用clip_pg_losses1
pg_losses = torch.where(advantages < 0, clip_pg_losses2, clip_pg_losses1)
# pg_losses: (bsz, response_length)
# 如何计算一整个batch的所有token的整体loss。这有多种方式,主要看配置的loss_agg_mode
pg_loss = agg_loss(loss_mat=pg_losses, loss_mask=response_mask, loss_agg_mode=loss_agg_mode)
return pg_loss, pg_clipfrac, ppo_kl, pg_clipfrac_lower
咱们继续看几种token loss的agg mode。不同RL方法,loss agg mode也是不同的
verl/trainer/ppo/core_algos.py
python
def agg_loss(loss_mat: torch.Tensor, loss_mask: torch.Tensor, loss_agg_mode: str):
"""
Aggregate the loss matrix into a scalar.
Args:
loss_mat: `(torch.Tensor)`:
shape: (bs, response_length)
loss_mask: `(torch.Tensor)`:
shape: (bs, response_length)
loss_agg_mode: (str) choices:
method to aggregate the loss matrix into a scalar.
Returns:
loss: `a scalar torch.Tensor`
aggregated loss
"""
if loss_agg_mode == "token-mean":
loss = verl_F.masked_mean(loss_mat, loss_mask)
elif loss_agg_mode == "seq-mean-token-sum":
seq_losses = torch.sum(loss_mat * loss_mask, dim=-1) # token-sum
loss = torch.mean(seq_losses) # seq-mean
elif loss_agg_mode == "seq-mean-token-mean":
seq_losses = torch.sum(loss_mat * loss_mask, dim=-1) / torch.sum(loss_mask, dim=-1) # token-mean
loss = torch.mean(seq_losses) # seq-mean
elif loss_agg_mode == "seq-mean-token-sum-norm":
seq_losses = torch.sum(loss_mat * loss_mask, dim=-1)
loss = torch.sum(seq_losses) / loss_mask.shape[-1] # The divisor
# (loss_mask.shape[-1]) should ideally be constant
# throughout training to well-replicate the DrGRPO paper.
# TODO: Perhaps add user-defined normalizer argument to
# agg_loss to ensure divisor stays constant throughout.
else:
raise ValueError(f"Invalid loss_agg_mode: {loss_agg_mode}")
return loss
GRPO
优化目标:
\[J= \mathbb{E}{\{o_i\}{i=1}^G\sim\pi_{old}(\cdot|q)} \frac{1}{|G|} \sum_{i=1}^{|G|}\frac{1}{|o|}\sum_{t=1}^{|o_i|}\{\min[\frac{\pi_{\theta}(o_{i,t}|q, o_{i,<t})}{\pi_{old}(o_{i,t}|q, o_{i, <t})}A_{i, t}, clip(\frac{\pi_{\theta}(o_{i,t}|q, o_{i,<t})}{\pi_{old}(o_{i,t}|q, o_{i, <t})}, 1-\epsilon, 1+\epsilon)A_{i,t}]-\beta \mathbb{D}{KL}(\pi{\theta}||\pi_{ref})\} \]
优势:
\[A_{i,t} = \frac{r_i-mean(r)}{std(r)} \]
KL3
\[\mathbb{D}{KL}(\pi{\theta}||\pi_{ref}) =\frac{\pi_{ref}(o_{i, t}|q,o_{i,<t})}{\pi_{\theta}(o_{i,t}|q, o_{i, <t})} -log(\frac{\pi_{ref}(o_{i, t}|q,o_{i,<t})}{\pi_{\theta}(o_{i,t}|q, o_{i, <t})})-1 \]
KL3的方差比KL1小,且是KL1的无偏估计
证明
\[\begin{aligned} \mathbb{D3}{KL}(P||Q) &= \sum{x\sim_{P}}P(x) [\frac{Q(x)}{P(x)} - log(\frac{P(x)}{Q(x)})-1]\\ &= \sum_{x\sim P}Q(x)+P(x)log(\frac{P(x)}{Q(x)})-P(x)\\ &=\sum_{x\sim P}Q(x) -\sum_{x\sim P}P(x)+\mathbb{D1}{KL}(P||Q) \\ &=\mathbb{D1}{KL}(P||Q)+\sum_{x\sim P}Q(x)-1\ \ \ \ \ \ \ \ \ 当P所有采样在Q中的概率和为1时(vocab一样的话)\\ &=\mathbb{D_1}_{KL}(P||Q) \end{aligned} \]
verl/trainer/ppo/core_algos.py
下面是verl对kl_loss的实现:
python
def kl_penalty_forward(logprob: torch.FloatTensor, ref_logprob: torch.FloatTensor, kl_penalty) -> torch.FloatTensor:
"""Compute KL divergence given logprob and ref_logprob.
Copied from https://github.com/huggingface/trl/blob/main/trl/trainer/ppo_trainer.py#L1104
See more description in http://joschu.net/blog/kl-approx.html
Args:
logprob:
ref_logprob:
Returns:
kl_estimate
"""
if kl_penalty in ("kl", "k1"):
return logprob - ref_logprob
if kl_penalty == "abs":
return (logprob - ref_logprob).abs()
if kl_penalty in ("mse", "k2"):
return 0.5 * (logprob - ref_logprob).square()
##############################################################
# 这里的low_var_kl与上述的grpo的KL计算公式相同
##############################################################
# J. Schulman. Approximating kl divergence, 2020.
# # URL http://joschu.net/blog/kl-approx.html.
if kl_penalty in ("low_var_kl", "k3"):
kl = ref_logprob - logprob
# For numerical stability
kl = torch.clamp(kl, min=-20, max=20)
ratio = torch.exp(kl)
kld = (ratio - kl - 1).contiguous()
return torch.clamp(kld, min=-10, max=10)
if kl_penalty == "full":
# so, here logprob and ref_logprob should contain the logits for every token in vocabulary
raise NotImplementedError
raise NotImplementedError
GSPO
seq-level 优化目标:
\[J= \mathbb{E}{\{o_i\}{i=1}^G\sim\pi_{old}(\cdot|q)} \frac{1}{|G|} \sum_{i=1}^{|G|}\min[(\frac{\pi_{\theta}(o_{i}|q)}{\pi_{old}(o_{i}|q)})^{\frac{1}{|o_i|}}A_{i}, clip((\frac{\pi_{\theta}(o_{i}|q)}{\pi_{old}(o_{i}|q)})^{\frac{1}{|o_i|}}, 1-\epsilon, 1+\epsilon)A_{i}] \]
\[\frac{\pi_{\theta}(o_i|q)}{\pi_{old}(o_i|q)} = \frac{\Pi_{t=1}^{|o_i|} \pi_{\theta}(o_{i,t}|q, o_{i,<t})}{\Pi_{t=1}^{|o_i|} \pi_{old}(o_{i,t}|q, o_{i,<t})} \]
token-level 优化目标:
\[J = \mathbb{E}{\{o_i\}{i=1}^G\sim \pi_{old}(\cdot|q)}\frac{1}{G}\sum_{i=1}^G\frac{1}{|o_i|}\sum_{t=1}^{|o_i|} \min(s_{i,t}A_{i,t}, clip(s_{i,t}, 1-\epsilon,1+\epsilon)A_{i,t})\\ \hat{s}{i,t} = sg[(\frac{\pi{\theta}(o_i|q)}{\pi_{old}(o_i|q)})^{\frac{1}{|o_i|}}]* \frac{\pi_{\theta}(o_{i,t}|q,o_{i,<t})}{sg[\pi_{\theta}(o_{i,t}|q,o_{i,<t})]} \]
可以发现的是 \(sg[s_{i,t}]=sg[s_{i}],s_{i}=(\frac{\pi_{\theta}(o_i|q)}{\pi_{old}(o_i|q)})^{\frac{1}{|o_i|}}\),但是在方向上不同
通过证明,可以发现,当\(A_{i,t}=A_i\)时,seq-level和token-level在前向传播和反向传播上是一样的
token-level 可以更好地扩展 同sample不同token的A的灵活度(每个token的A可以不相同)
verl/trainer/ppo/core_algos.py
python
##########################################################
# 计算gspo的pg_loss,重点关注IS的计算
##########################################################
@register_policy_loss("gspo")
def compute_policy_loss_gspo(
old_log_prob: torch.Tensor,
log_prob: torch.Tensor,
advantages: torch.Tensor,
response_mask: torch.Tensor,
loss_agg_mode: str = "seq-mean-token-mean",
config: Optional[DictConfig | ActorConfig] = None,
rollout_is_weights: torch.Tensor | None = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Compute the clipped policy objective and related metrics for GSPO.
See https://arxiv.org/pdf/2507.18071 for more details.
Args:
old_log_prob (torch.Tensor):
Log-probabilities of actions under the old policy, shape (batch_size, response_length).
log_prob (torch.Tensor):
Log-probabilities of actions under the current policy, shape (batch_size, response_length).
advantages (torch.Tensor):
Advantage estimates for each action, shape (batch_size, response_length).
response_mask (torch.Tensor):
Mask indicating which tokens to include in the loss, shape (batch_size, response_length).
loss_agg_mode (str, optional):
Aggregation mode for `agg_loss`. For GSPO, it is recommended to use "seq-mean-token-mean".
"""
assert config is not None
assert isinstance(config, ActorConfig)
clip_ratio_low = config.clip_ratio_low if config.clip_ratio_low is not None else config.clip_ratio
clip_ratio_high = config.clip_ratio_high if config.clip_ratio_high is not None else config.clip_ratio
negative_approx_kl = log_prob - old_log_prob
# compute sequence-level importance ratio:
# si(θ) = (π_θ(yi|x)/π_θold(yi|x))^(1/|yi|) =
# exp [(1/|y_i|) * Σ_t log(π_θ(y_i,t|x,y_i,<t)/π_θold(y_i,t|x,y_i,<t))]
seq_lengths = torch.sum(response_mask, dim=-1).clamp(min=1)
negative_approx_kl_seq = torch.sum(negative_approx_kl * response_mask, dim=-1) / seq_lengths
# Combined ratio at token level:
# s_i,t(θ) = sg[s_i(θ)] · π_θ(y_i,t|x, y_i,<t) / sg[π_θ(y_i,t|x, y_i,<t)]
# In log space: log(s_i,t(θ)) = sg[log(s_i(θ))] + log_prob - sg[log_prob]
log_seq_importance_ratio = log_prob - log_prob.detach() + negative_approx_kl_seq.detach().unsqueeze(-1)
log_seq_importance_ratio = torch.clamp(log_seq_importance_ratio, max=10.0) # clamp for numerical stability
# finaly exp() to remove log
seq_importance_ratio = torch.exp(log_seq_importance_ratio)
pg_losses1 = -advantages * seq_importance_ratio
pg_losses2 = -advantages * torch.clamp(seq_importance_ratio, 1 - clip_ratio_low, 1 + clip_ratio_high)
pg_losses = torch.maximum(pg_losses1, pg_losses2)
# Apply rollout importance sampling weights if provided
if rollout_is_weights is not None:
pg_losses = pg_losses * rollout_is_weights
# for GSPO, we need to aggregate the loss at the sequence level (seq-mean-token-mean)
pg_loss = agg_loss(loss_mat=pg_losses, loss_mask=response_mask, loss_agg_mode="seq-mean-token-mean")
# For compatibility, return zero for pg_clipfrac_lower (not used in standard GSPO)
pg_clipfrac = verl_F.masked_mean(torch.gt(pg_losses2, pg_losses1).float(), response_mask)
pg_clipfrac_lower = torch.tensor(0.0, device=pg_loss.device)
ppo_kl = verl_F.masked_mean(-negative_approx_kl, response_mask)
return pg_loss, pg_clipfrac, ppo_kl, pg_clipfrac_lower
DAPO
优化目标:
\[\mathcal{J} = \mathbb{E}{(q,a)\sim \mathcal{D}, \{o_i\}{i=1}^G\sim \pi_{old}(\cdot|q)} [\frac{1}{\sum_{i=1}^G|o_i|}\sum_{i=1}^G\sum_{t=1}^{|o_i|}\min(r_{i,t}(\theta)A_{i, t}, clip(r_{i,t}(\theta),1-\epsilon_{low}, 1+\epsilon_{high})A_{i,t})]\\ s.t.\ 0<|\{o_i|is\_equivalent(o_i,a)\}|<G \]
其中
\[r_{i,t}(\theta)=\frac{\pi_{\theta}(o_{i,t}|q,o_{i,<t})}{\pi_{old}(o_{i,t}|q,o_{i,<t})}, A_{i,t} = \frac{R_i-mean(\{R_i\}{i=1}^G)}{std(\{R_i\}{i=1}^G)} \]
其loss agg mode是token-mean。