STM32配置读取激光测距传感器VL6180X距离数据

STM32配置读取激光测距传感器VL6180X距离数据

VL6180X是ST公司出品的一款近距离激光测距传感器,VL6180X采用850nm垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser,简称VCSEL)发射出激光,激光碰到障碍物后反射回来被VL6180X接收到,测量激光在空气中的传播时间,进而得到距离。

VL6180X的比较准确测试范围为0mm~100mm。可以和VL53L0X互补实现近远距离覆盖的测试。市面上已有模块:

里介绍通过STM32芯片进行连接和测距数据读取的实现。

电路连接

STM32采用Open-drain方式和VL6180X的连接如下所示,注意VL6180X本身是2.8V供电要求的芯片:

除了用于I2C通讯的SCL, SDA外,主要有GPIO0和GPIO1两个管脚,GPIO0用做芯片使能,高电平有效,GPIO1目前是作为中断输出给STM32, 作为距离测试结果可读取的指示,另外,如果不用GPIO1,则可以直接通过I2C总线读取内部寄存器信息,获得一致的指示信息。

操作模式

VL6180X有作为环境光检测传感器和接近检测传感器两种功能。在配置好I2C管脚和握手协议函数后,要进行一些内部寄存器初始化,ST提供了初始化参考代码。

这里以STM32G030F6P6(32K Flash)和STM32CUBEIDE开发环境为例,实现VL6180X的访问控制,采用非中断判断数据可读方式,通过寄存器读取数据有效状态。

STM32CUBEIDE工程配置

首先建立基本工程并配置时钟系统:

普通UART和模拟I2C, 采用内部时钟即可:

然后例化UART2作为通讯口:

这里选择PA0输出片选低有效给VL6180X的GPIO0, VL6180X的GPIO1连接到STM32的PA1管脚(但不用)。PA11作为SLK, PA12作为SDA:

然后保存代码并生成基本工程代码:

STM32工程代码

I2C模拟时序用到的微秒延时函数,参考: STM32 HAL us delay(微秒延时)的指令延时实现方式及优化

STM32串口打印的实现,参考: STM32 UART串口printf函数应用及浮点打印代码空间节省 (HAL)

采用减少代码编译size的方式,参考: STM32 region `FLASH' overflowed by xxx bytes 问题解决

代码逻辑采用简化实现,上电或重启后,STM32对VL6180X进行初始化,如果失败,则打印输出报错信息,如果成功,则循环进行距离检测和打印输出。

完整的main.c代码:

csharp 复制代码
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2022 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "usart.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
//us delay functions
__IO float usDelayBase;
void PY_usDelayTest(void)
{
  __IO uint32_t firstms, secondms;
  __IO uint32_t counter = 0;

  firstms = HAL_GetTick()+1;
  secondms = firstms+1;

  while(uwTick!=firstms) ;

  while(uwTick!=secondms) counter++;

  usDelayBase = ((float)counter)/1000;
}

void PY_Delay_us_t(uint32_t Delay)
{
  __IO uint32_t delayReg;
  __IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}

void PY_usDelayOptimize(void)
{
  __IO uint32_t firstms, secondms;
  __IO float coe = 1.0;

  firstms = HAL_GetTick();
  PY_Delay_us_t(1000000) ;
  secondms = HAL_GetTick();

  coe = ((float)1000)/(secondms-firstms);
  usDelayBase = coe*usDelayBase;
}

void PY_Delay_us(uint32_t Delay)
{
  __IO uint32_t delayReg;

  __IO uint32_t msNum = Delay/1000;
  __IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);

  if(msNum>0) HAL_Delay(msNum);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
//VL6180X I2C access protocol
#define us_num 10

#define SCL_OUT_H HAL_GPIO_WritePin(GPIOA, GPIO_PIN_11, GPIO_PIN_SET)
#define SCL_OUT_L HAL_GPIO_WritePin(GPIOA, GPIO_PIN_11, GPIO_PIN_RESET)
#define SDA_OUT_H HAL_GPIO_WritePin(GPIOA, GPIO_PIN_12, GPIO_PIN_SET)
#define SDA_OUT_L HAL_GPIO_WritePin(GPIOA, GPIO_PIN_12, GPIO_PIN_RESET)
#define SDA_IN HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_12)

/*
 * The VL6180X device can operate in 2 different modes:
 * Single-shot measurement or Continuous measurement for both ranging and ALS.
 * The Vl6180X API enables 3 different typical operating range modes: Polling, interrupt or asynchronous.
 * And 3 different ALS modes: Polling, interrupt and interleaved.
 */
void I2C_Init(void)
{
	SCL_OUT_H;
	SDA_OUT_H;
	PY_Delay_us_t(400) ; //400 us delay

	PY_Delay_us_t(1000000) ; //1ms delay
}

void I2C_Start(void)
{
	PY_Delay_us_t(us_num) ;
	SDA_OUT_H;
	SCL_OUT_H;
	PY_Delay_us_t(us_num/2) ;
	SDA_OUT_L;
	PY_Delay_us_t(us_num/2) ;
	SCL_OUT_L;
}

void I2C_Stop(void)
{
	SCL_OUT_L;
	PY_Delay_us_t(us_num) ;
	SDA_OUT_L;
	PY_Delay_us_t(us_num) ;
	SCL_OUT_H;
	PY_Delay_us_t(us_num) ;
	SDA_OUT_H;
	PY_Delay_us_t(us_num) ;
}

void I2C_Write_Ack(void)
{

    PY_Delay_us_t(us_num/2) ;
	SDA_OUT_L;
	PY_Delay_us_t(us_num/2) ;
	SCL_OUT_H;
	PY_Delay_us_t(us_num) ;
	SCL_OUT_L;
	SDA_OUT_H;

}

uint8_t I2C_Read_Ack(void)
{
	uint8_t status=0;

	SCL_OUT_L;
	PY_Delay_us_t(us_num/2) ;
	SDA_OUT_H;
	PY_Delay_us_t(us_num/2) ;
	status = SDA_IN;
	SCL_OUT_H;
	PY_Delay_us_t(us_num) ;
	SCL_OUT_L;
	SDA_OUT_L;

	return status;

}


void I2C_Send_Byte(uint8_t txd){


    for(uint8_t i=0;i<8;i++)
    {
    	PY_Delay_us_t(us_num/2) ;
        if((txd&0x80)>>7) SDA_OUT_H;
        else SDA_OUT_L;
        txd<<=1;
        PY_Delay_us_t(us_num/2) ;
        SCL_OUT_H;
        PY_Delay_us_t(us_num) ;
		SCL_OUT_L;
    }

    SDA_OUT_L;
}

uint8_t I2C_Read_Byte(unsigned char rdack)
{
	uint8_t rxd=0;


    for(uint8_t i=0;i<8;i++ )
	{
    	SCL_OUT_L;
    	PY_Delay_us_t(us_num/2) ;
    	SDA_OUT_H;
    	PY_Delay_us_t(us_num/2) ;
    	SCL_OUT_H;
        rxd<<=1;
        if(SDA_IN) rxd++;
        PY_Delay_us_t(us_num) ;
    }

    SCL_OUT_L;
    SDA_OUT_H;

    if (rdack) I2C_Write_Ack();

    return rxd;
}

void VL6180X_WRITE_1Byte(uint16_t WrAddr, uint8_t data)
{
	  uint8_t daddr = 0x52; //VL6180X device address (0x29<<1)

	  I2C_Start();
	  I2C_Send_Byte(daddr);
	  I2C_Read_Ack();
  	  I2C_Send_Byte(WrAddr>>8);
  	  I2C_Read_Ack();
  	  I2C_Send_Byte(WrAddr);
  	  I2C_Read_Ack();
  	  I2C_Send_Byte(data);
  	  I2C_Read_Ack();
  	  I2C_Stop();
}

uint8_t VL6180X_READ_1Byte(uint16_t RdAddr)
{

	  uint8_t RegValue = 0;
	  uint8_t daddr = 0x52; //VL6180X device address (0x29<<1)

	  I2C_Start();
	  I2C_Send_Byte(daddr);
	  I2C_Read_Ack();
  	  I2C_Send_Byte(RdAddr>>8);
  	  I2C_Read_Ack();
  	  I2C_Send_Byte(RdAddr);
  	  I2C_Read_Ack();

  	  I2C_Start();
	  I2C_Send_Byte(daddr+1);
	  I2C_Read_Ack();
	  RegValue=I2C_Read_Byte(0);
  	  I2C_Stop();

	  return RegValue;
}

uint16_t VL6180X_READ_2Byte(uint16_t RdAddr)
{

	  uint8_t RegValueH = 0, RegValueL = 0;
	  uint8_t daddr = 0x52; //VL6180X device address (0x29<<1)

	  I2C_Start();
	  I2C_Send_Byte(daddr);
	  I2C_Read_Ack();
  	  I2C_Send_Byte(RdAddr>>8);
  	  I2C_Read_Ack();
  	  I2C_Send_Byte(RdAddr);
  	  I2C_Read_Ack();

  	  I2C_Start();
	  I2C_Send_Byte(daddr+1);
	  I2C_Read_Ack();
	  RegValueL=I2C_Read_Byte(1);
	  RegValueH=I2C_Read_Byte(0);
  	  I2C_Stop();

	  return (((uint16_t)RegValueH)<<8)|RegValueL;
}
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
uint8_t VL6180X_Read_ID(void)
{
	return VL6180X_READ_1Byte(VL6180X_REG_IDENTIFICATION_MODEL_ID);
}

uint8_t VL6180X_Init(void)
{
	if(VL6180X_Read_ID() == VL6180X_DEFAULT_ID)
	{
		//coming from <an4545-vl6180x-basic-ranging-application-note-stmicroelectronics>
		VL6180X_WRITE_1Byte(0x0207, 0x01);
		VL6180X_WRITE_1Byte(0x0208, 0x01);
		VL6180X_WRITE_1Byte(0x0096, 0x00);
		VL6180X_WRITE_1Byte(0x0097, 0xfd);
		VL6180X_WRITE_1Byte(0x00e3, 0x00);
		VL6180X_WRITE_1Byte(0x00e4, 0x04);
		VL6180X_WRITE_1Byte(0x00e5, 0x02);
		VL6180X_WRITE_1Byte(0x00e6, 0x01);
		VL6180X_WRITE_1Byte(0x00e7, 0x03);
		VL6180X_WRITE_1Byte(0x00f5, 0x02);
		VL6180X_WRITE_1Byte(0x00d9, 0x05);
		VL6180X_WRITE_1Byte(0x00db, 0xce);
		VL6180X_WRITE_1Byte(0x00dc, 0x03);
		VL6180X_WRITE_1Byte(0x00dd, 0xf8);
		VL6180X_WRITE_1Byte(0x009f, 0x00);
		VL6180X_WRITE_1Byte(0x00a3, 0x3c);
		VL6180X_WRITE_1Byte(0x00b7, 0x00);
		VL6180X_WRITE_1Byte(0x00bb, 0x3c);
		VL6180X_WRITE_1Byte(0x00b2, 0x09);
		VL6180X_WRITE_1Byte(0x00ca, 0x09);
		VL6180X_WRITE_1Byte(0x0198, 0x01);
		VL6180X_WRITE_1Byte(0x01b0, 0x17);
		VL6180X_WRITE_1Byte(0x01ad, 0x00);
		VL6180X_WRITE_1Byte(0x00ff, 0x05);
		VL6180X_WRITE_1Byte(0x0100, 0x05);
		VL6180X_WRITE_1Byte(0x0199, 0x05);
		VL6180X_WRITE_1Byte(0x01a6, 0x1b);
		VL6180X_WRITE_1Byte(0x01ac, 0x3e);
		VL6180X_WRITE_1Byte(0x01a7, 0x1f);
		VL6180X_WRITE_1Byte(0x0030, 0x00);

		// Recommended : Public registers - See data sheet for more detail
		VL6180X_WRITE_1Byte(0x0011, 0x10);       // Enables polling for 'New Sample ready' when measurement completes
		VL6180X_WRITE_1Byte(0x010a, 0x30);       // Set the averaging sample period (compromise between lower noise and increased execution time)
		                                         // Adjusted from 0 to 255. Increasing the sampling period decreases noise but also reduces the effective max convergence time and increases power consumption
		VL6180X_WRITE_1Byte(0x003f, 0x46);       // Sets the light and dark gain (upper nibble). Dark gain should not be changed. So to keep high half-byte as 0x4*.
		                                         // It's for ALS analogue gain.
		VL6180X_WRITE_1Byte(0x0031, 0xFF);       // sets the # of range measurements after which auto calibration of system is performed
		VL6180X_WRITE_1Byte(0x0040, 0x63);       // Set ALS integration time to 100ms
		VL6180X_WRITE_1Byte(0x002e, 0x01);       // perform a single temperature calibration of the ranging sensor

		// Optional: Public registers - See data sheet for more detail
		VL6180X_WRITE_1Byte(0x001b, 0x09);       //Set default ranging inter-measurement period to 100ms. Time delay between measurements in Ranging continuous mode. Range 0-254 (0 = 10ms). Step size = 10ms.
		VL6180X_WRITE_1Byte(0x003e, 0x31);       //Set default ALS inter-measurement period to 500ms. Time delay between measurements in ALS continuous mode. Range 0-254 (0 = 10ms). Step size = 10ms.
		VL6180X_WRITE_1Byte(0x0014, 0x24);       //Configures interrupt on 'New Sample Ready threshold event'
		return 0;
	}
	else return 1;
}

//unit: mm
uint8_t VL6180X_Read_Range(void)
{
	uint8_t range = 0;
    //Read status
	while(!(VL6180X_READ_1Byte(VL6180X_REG_RESULT_RANGE_STATUS) & 0x01));
	VL6180X_WRITE_1Byte(VL6180X_REG_SYSRANGE_START,0x01);	//Single trigger mode
	//New Sample Ready threshold event)
	while(!(VL6180X_READ_1Byte(VL6180X_REG_RESULT_INTERRUPT_STATUS_GPIO) & 0x04));
	range = VL6180X_READ_1Byte(VL6180X_REG_RESULT_RANGE_VAL);
	//Clear int
	VL6180X_WRITE_1Byte(VL6180X_REG_SYSTEM_INTERRUPT_CLEAR,0x07);	//0111b clear int flags
	return range;
}

//Read ALS
float VL6180X_Read_Lux(uint8_t Gain)
{
	float lux;
	uint8_t reg;
	reg = VL6180X_READ_1Byte(VL6180X_REG_SYSTEM_INTERRUPT_CONFIG);
	reg &= ~0x38;
	reg |= (0x4<<3);

	VL6180X_WRITE_1Byte(VL6180X_REG_SYSALS_INTEGRATION_PERIOD_HI,0);
	VL6180X_WRITE_1Byte(VL6180X_REG_SYSALS_INTEGRATION_PERIOD_LO,100);	//101ms
	if (Gain > VL6180X_ALS_GAIN_40)
	{
		Gain = VL6180X_ALS_GAIN_40;
	}
	VL6180X_WRITE_1Byte(VL6180X_REG_SYSALS_ANALOGUE_GAIN, 0x40 | Gain);
	VL6180X_WRITE_1Byte(VL6180X_REG_SYSALS_START, 0x1);
	// New Sample Ready threshold event
	while (4 != ((VL6180X_READ_1Byte(VL6180X_REG_RESULT_INTERRUPT_STATUS_GPIO) >> 3) & 0x7));

	lux = VL6180X_READ_2Byte(VL6180X_REG_RESULT_ALS_VAL);
	VL6180X_WRITE_1Byte(VL6180X_REG_SYSTEM_INTERRUPT_CLEAR,0x07);

	lux *= 0.32f; // calibrated count/lux
	switch(Gain) {
	case VL6180X_ALS_GAIN_1:
	break;
	case VL6180X_ALS_GAIN_1_25:
	lux /= 1.25f;
	break;
	case VL6180X_ALS_GAIN_1_67:
	lux /= 1.76f;
	break;
	case VL6180X_ALS_GAIN_2_5:
	lux /= 2.5f;
	break;
	case VL6180X_ALS_GAIN_5:
	lux /= 5;
	break;
	case VL6180X_ALS_GAIN_10:
	lux /= 10;
	break;
	case VL6180X_ALS_GAIN_20:
	lux /= 20;
	break;
	case VL6180X_ALS_GAIN_40:
	lux /= 20;
	break;
	}
	lux *= 100;
	lux /= 100; // integration time in ms
	return lux;
}

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart2;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t data[16];
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
  uint8_t ex_range = 0;
  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART2_UART_Init();
  /* USER CODE BEGIN 2 */
  PY_usDelayTest();
  PY_usDelayOptimize();

  if(VL6180X_Init() == 1)
  {
	  while(1)
	  {
		  printf("\r\nVL6180X initialization fails!\r\n");
		  PY_Delay_us_t(2000000);
	  }
  }

  PY_Delay_us_t(2000000);

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {

	    ex_range = VL6180X_Read_Range();
		printf("\r\n Current Range:%d mm",ex_range);

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV1;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV1;
  RCC_OscInitStruct.PLL.PLLN = 8;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief USART2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART2_UART_Init(void)
{

  /* USER CODE BEGIN USART2_Init 0 */

  /* USER CODE END USART2_Init 0 */

  /* USER CODE BEGIN USART2_Init 1 */

  /* USER CODE END USART2_Init 1 */
  huart2.Instance = USART2;
  huart2.Init.BaudRate = 115200;
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
  huart2.Init.StopBits = UART_STOPBITS_1;
  huart2.Init.Parity = UART_PARITY_NONE;
  huart2.Init.Mode = UART_MODE_TX_RX;
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART2_Init 2 */

  /* USER CODE END USART2_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOA_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOA, GPIO_PIN_11|GPIO_PIN_12, GPIO_PIN_SET);

  /*Configure GPIO pin : PA0 */
  GPIO_InitStruct.Pin = GPIO_PIN_0;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /*Configure GPIO pin : PA1 */
  GPIO_InitStruct.Pin = GPIO_PIN_1;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /*Configure GPIO pins : PA11 PA12 */
  GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_12;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

测试输出

代码测试打印输出:

工程代码下载

STM32G030F6P6配置读取VL6180X完整工程下载

--End--

相关推荐
mc23563 小时前
STM32F103C8T6--深入GPIO
stm32·单片机·嵌入式硬件
兆龙电子单片机设计3 小时前
【STM32项目开源】STM32单片机智能家居控制系统
stm32·单片机·物联网·开源·毕业设计·智能家居
A9better4 小时前
嵌入式开发学习日志41——stm32之SPI总线基本结构
stm32·单片机·嵌入式硬件·学习
xyx-3v4 小时前
STM32 AFIO时钟什么情况需要开启?
stm32·单片机·嵌入式硬件
充哥单片机设计4 小时前
【STM32项目开源】基于STM32的智能家居环境监测系统
stm32·嵌入式硬件·智能家居
hazy1k9 小时前
51单片机基础-外部中断INT
stm32·单片机·嵌入式硬件·51单片机
lzj_pxxw11 小时前
嵌入式开发技巧:舍弃标志位,用宏定义函数实现程序单次运行
笔记·stm32·单片机·嵌入式硬件·学习
木子单片机13 小时前
基于51单片机温度检测报警
stm32·单片机·嵌入式硬件·51单片机·keil
hazy1k1 天前
51单片机基础-步进电机控制
stm32·单片机·嵌入式硬件·51单片机