时间卷积长短期记忆神经网络

机器学习之心8 个月前
时间卷积长短期记忆神经网络·多特征分类预测·tcn-lstm-matt
JCR一区级 | Matlab实现TCN-LSTM-MATT时间卷积长短期记忆神经网络多特征分类预测1.JCR一区级 | Matlab实现TCN-LSTM-MATT时间卷积长短期记忆神经网络多特征分类预测,TCN-LSTM-Multihead-Attention; 多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中
机器学习之心8 个月前
attention·多变量时间序列预测·时间卷积长短期记忆神经网络·粒子群算法优化·融合注意力机制·pso-tcn-lstm
SCI一区 | Matlab实现PSO-TCN-LSTM-Attention粒子群算法优化时间卷积长短期记忆神经网络融合注意力机制多变量时间序列预测1.基于PSO-TCN-LSTM-Attention粒子群算法优化时间卷积长短期记忆神经网络融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制; 2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测; 3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹; 4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价; 5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。
机器学习之心1 年前
时间序列预测·tcn-lstm·时间卷积长短期记忆神经网络·vmd·vmd-tcn-lstm·变分模态分解·多变量光伏功率
EI级 | Matlab实现VMD-TCN-LSTM变分模态分解结合时间卷积长短期记忆神经网络多变量光伏功率时间序列预测1.【EI级】Matlab实现VMD-TCN-LSTM多变量时间序列预测(光伏功率数据); Matlab实现VMD-TCN-LSTM变分模态分解结合时间卷积长短期记忆神经网络多变量光伏功率时间序列预测; VMD对光伏功率分解,TCN-LSTM模型对分量分别建模预测后相加 2.运行环境为Matlab2021a及以上; 3.数据集为excel(光伏功率数据),输入多个特征,输出单个变量,多变量光伏功率时间序列预测,main.m为主程序,运行即可,所有文件放在一个文件夹; 4.命令窗口输出R2、MSE、RMSE
机器学习之心1 年前
时间序列预测·tcn-lstm·时间卷积长短期记忆神经网络
时序预测 | MATLAB实现TCN-LSTM时间卷积长短期记忆神经网络时间序列预测1.MATLAB实现TCN-LSTM时间卷积长短期记忆神经网络时间序列预测; 2.运行环境为Matlab2021b; 3.单变量时间序列预测; 4.data为数据集,excel数据,MainTCN_LSTMTS.m为主程序,运行即可,所有文件放在一个文件夹; 5.命令窗口输出RMSE、MAE、MAPE多指标评价。