PyTorch实战(14)——图注意力网络(Graph Attention Network,GAT)我们已经通过使用图卷积网络 (Graph Convolutional Network, GCN) 模型在节点分类任务上具备了超越了基线多层感知机 (Multilayer Perceptron, MLP) 模型的性能。在本节中,我们将通过将 GCN 模型替换为图注意力网络 (Graph Attention Network, GAT) 模型来进一步提高分类准确率,核心改进在于将邻域节点信息平均聚合机制替换为注意力机制。接下来,将基于 GCN 的解决方案重构为基于 GAT 的解决方案。